首页 > 其他分享 >(二)十分简易快速 自己训练样本 opencv级联lbp分类器 车牌识别

(二)十分简易快速 自己训练样本 opencv级联lbp分类器 车牌识别

时间:2024-09-05 14:23:36浏览次数:12  
标签:lbp 训练 LBP Haar 分类器 opencv 特征

标签:lbp,训练,LBP,Haar,分类器,opencv,特征
From: https://blog.csdn.net/2301_80015907/article/details/141896698

相关文章

  • opencv实战项目二十:检测箱盖的旋转角度以及位置
    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、算法流程:二、算法实现:2.1二值化箱盖并获取最大轮廓:2.2凸包与多边形近似提取矩形2.3最小外接矩形获取角度与位置三,整体代码实现:四,实现效果:前言在当今的工业自动化领域,精密制造和......
  • OPenCV结构分析与形状描述符(5)查找图像中的连通组件的函数connectedComponents()的使用
    操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述connectedComponents函数计算布尔图像的连通组件标签图像。该函数接受一个具有4或8连通性的二值图像,并返回N,即标签总数(标签范围为[0,N-1],其中0代表背景标签)。ltype参数指......
  • OPenCV结构分析与形状描述符(3)计算一个点集的最小外接矩形的函数boundingRect()的使用
    操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述计算一个点集的最小右上边界矩形或灰度图像中的非零像素。该函数计算并返回指定点集或灰度图像中非零像素的最小右上边界矩形。在OpenCV中,boundingRect函数用于找到一个点集的最......
  • opencv全面详解教程
    opencv全面详解教程1.OpenCV简介2.安装OpenCV2.1使用pip安装(适用于Python)2.2通过conda安装2.3从源码编译(高级)3.OpenCV基本操作3.1读取和显示图像3.2保存图像3.3视频处理4.图像处理操作4.1调整大小和裁剪4.2颜色空间转换4.3图像平滑(滤波)4.4边......
  • OpenCV使用RTMP流
    使用RTMP流之前使用nginx进行推流sudoapt-getinstallnginxlibnginx-mod-rtmp配置文件中添加以下内容:rtmp{server{listen1935;chunk_size4096;applicationlive{liveon;recordoff;}}}Linux下安......
  • 《OpenCV计算机视觉》—— 图像轮廓检测与绘制
    文章目录一、轮廓的检测二、轮廓的绘制图像轮廓检测与绘制的代码实现三、轮廓的近似一、轮廓的检测轮廓检测是指在包含目标和背景的数字图像中,忽略背景和目标内部的纹理以及噪声干扰的影响,采用一定的技术和方法来实现目标轮廓提取的过程注意:做轮廓检测前需要将图片......
  • 《OpenCV计算机视觉》—— 模板匹配
    文章目录一、模板匹配简单介绍二、三个主要函数的介绍1.执行模板匹配函数-cv2.matchTemplate()2.查找最佳匹配函数-cv2.minMaxLoc()3.在原图上绘制匹配区域函数-cv2.rectangle()三、代码实现一、模板匹配简单介绍在Python中,模板匹配是一种在图像中查找与给定模板最......
  • OpenCV 之图像平滑处理
    引言图像平滑处理(也称为“模糊处理”)是计算机视觉中一项非常基础的技术,常用于减少图像噪声或失真,提高图像质量。平滑处理可以通过各种滤波器实现,常见的滤波器包括均值滤波、方框滤波、高斯滤波和中值滤波。本文将详细介绍这些滤波器的原理及其在OpenCV中的具体实现。基础概......
  • opencv轮廓近似,模板匹配
    在图像处理领域,轮廓近似和模板匹配是两种非常关键的技术,它们广泛应用于计算机视觉、图像分析和图像识别等多个方面。本文将详细介绍如何使用OpenCV库进行轮廓近似和模板匹配,并给出具体的代码示例。一、轮廓近似(ContourApproximation)轮廓近似是指将图像中的轮廓逼近成由直线......
  • 【全网独家】OpenCV: 影像格式(Mat)
    OpenCV:影像格式(Mat)介绍在OpenCV中,Mat是一个非常重要的数据结构,用于表示二维的图像数据。它能够支持多种类型的数据存储,包括灰度图、彩色图以及多通道图像。特点多维矩阵:支持多维度矩阵操作。高效内存管理:使用引用计数来确保内存资源安全且高效地释放。灵活性:......