人群聚集监测预警系统采用AI视频智能分析技术,人群聚集监测预警系统通过在工地、工厂等场所已经安装监控摄像头,人群聚集监测预警系统对人员聚集情况进行实时监测,当人群聚集过于密集时,系统将自动发出警报,人群聚集监测预警系统并通过人工智能算法对人员的状态进行识别和分析,及时通知现场管理人员进行处理。人群聚集监测预警系统24小时不间断运行,能够实时监测人员聚集情况,人群聚集监测预警系统及时发现人群聚集过于密集的情况。
2018年,作者Redmon又在YOLOv2的基础上做了一些改进。特征提取部分采用Darknet-53网络结构代替原来的Darknet-19,利用特征金字塔网络结构实现了多尺度检测,分类方法使用逻辑回归代替了softmax,在兼顾实用性的同时保证了目标检测的准确性。
从YOLOv1到YOLOv3,每一代性能的提升都与backbone(骨干网络)的改进密切相关。在YOLOv3中,作者不仅提供了darknet-53,还提供了轻量级的tiny-darknet。如果你想检测精度与速度兼备,可以选择darknet-53作为backbone;如果你想达到更快的检测速度,精度方面可以妥协。那么tiny-darknet是你很好的选择。总之,YOLOv3的灵活性使得它在实际工程中得到很多人的青睐。
在工地、工厂等场所,人员聚集是常见的情况。然而,人群聚集过于密集容易引发各种安全事故。为了防范此类事故,人群聚集监测预警系统应运而生。人群聚集监测预警系统能够自动识别人群聚集过于密集的情况,并发出警报提示管理人员及时采取措施。人群聚集监测预警系统能够快速反应人群聚集过于密集的情况,及时通知管理人员进行处理,减少安全事故的风险。人群聚集监测预警系统被安装在工地、工厂的出入口、生产线等区域,为场所的安全提供更加全面的保障。
class Detect(nn.Module):
stride = None # strides computed during build
onnx_dynamic = False # ONNX export parameter
def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
super().__init__()
self.nc = nc # number of classes
self.no = nc + 5 # number of outputs per anchor
self.nl = len(anchors) # number of detection layers
self.na = len(anchors[0]) // 2 # number of anchors
self.grid = [torch.zeros(1)] * self.nl # init grid
self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid
self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
self.inplace = inplace # use in-place ops (e.g. slice assignment)
def forward(self, x):
z = [] # inference output
for i in range(self.nl):
x[i] = self.m[i](x[i]) # conv
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
if not self.training: # inference
if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
y = x[i].sigmoid()
if self.inplace:
y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
y = torch.cat((xy, wh, y[..., 4:]), -1)
z.append(y.view(bs, -1, self.no))
return x if self.training else (torch.cat(z, 1), x)
def _make_grid(self, nx=20, ny=20, i=0):
d = self.anchors[i].device
if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
else:
yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
return grid, anchor_grid
人群聚集监测预警系统是一种基于物联网技术的新型安全保障系统,人群聚集监测预警系统通过实时监测人员聚集情况,及时发现并预警人群聚集过于密集的情况。人群聚集监测预警系统适用于各类工地、工厂等场所,可以为场所的安全提供更加全面的保障。人群聚集监测预警系统适用于各类工地、工厂等场所,特别是那些人员数量多、相对密集的场所。
标签:YOLOv3,人群,self,torch,grid,预警系统,监测,聚集 From: https://blog.51cto.com/u_16270964/11911315