首页 > 其他分享 >【TVM 教程】构建图卷积网络

【TVM 教程】构建图卷积网络

时间:2024-08-29 18:24:05浏览次数:23  
标签:教程 relay 卷积 dgl TVM params instead output data

更多 TVM 中文文档可访问 → https://tvm.hyper.ai/

本文介绍如何用 Relay 构建图卷积网络(GCN)。本教程演示在 Cora 数据集上运行 GCN。Cora 数据集是图神经网络(GNN)的 benchmark,同时是支持 GNN 训练和推理的框架。我们直接从 DGL 库加载数据集来与 DGL 进行同类比较。

pip install torch==2.0.0
pip install dgl==v1.0.0

有关 DGL 安装,参阅 DGL 文档

有关 PyTorch 安装,参阅 PyTorch 指南

使用 PyTorch 后端在 DGL 中定义 GCN

这部分重用了 DGL 示例 的代码。

import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl
import networkx as nx
from dgl.nn.pytorch import GraphConv

class GCN(nn.Module):
 def __init__(self, g, n_infeat, n_hidden, n_classes, n_layers, activation):
 super(GCN, self).__init__()
        self.g = g
        self.layers = nn.ModuleList()
        self.layers.append(GraphConv(n_infeat, n_hidden, activation=activation))
 for i in range(n_layers - 1):
            self.layers.append(GraphConv(n_hidden, n_hidden, activation=activation))
        self.layers.append(GraphConv(n_hidden, n_classes))

 def forward(self, features):
        h = features
 for i, layer in enumerate(self.layers):
 # handle api changes for differnt DGL version
 # 处理不同 DGL 版本的不同函数
 if dgl.__version__ > "0.3":
                h = layer(self.g, h)
 else:
                h = layer(h, self.g)
 return h

输出结果:

Using backend: pytorch

定义加载数据集和评估准确性的函数

可以将这部分替换为你自己的数据集,本示例中,我们选择从 DGL 加载数据:

from dgl.data import load_data
from collections import namedtuple

def evaluate(g, logits):
    label = g.ndata["label"]
    test_mask = g.ndata["test_mask"]

    pred = logits.argmax(axis=1)
    acc = (torch.Tensor(pred[test_mask]) == label[test_mask]).float().mean()

 return acc

加载数据并设置模型参数

"""
Parameters
----------
num_layer: int
    number of hidden layers

num_hidden: int
    number of the hidden units in the hidden layer

infeat_dim: int
    dimension of the input features

num_classes: int
    dimension of model output (Number of classes)
"""

dataset = dgl.data.CoraGraphDataset()
dgl_g = dataset[0]

num_layers = 1
num_hidden = 16
features = dgl_g.ndata["feat"]
infeat_dim = features.shape[1]
num_classes = dataset.num_classes

输出结果:

Downloading /workspace/.dgl/cora_v2.zip from https://data.dgl.ai/dataset/cora_v2.zip...
Extracting file to /workspace/.dgl/cora_v2
Finished data loading and preprocessing.
  NumNodes: 2708
  NumEdges: 10556
  NumFeats: 1433
  NumClasses: 7
  NumTrainingSamples: 140
  NumValidationSamples: 500
  NumTestSamples: 1000
Done saving data into cached files.
/usr/local/lib/python3.7/dist-packages/dgl/data/utils.py:286: UserWarning: Property dataset.graph will be deprecated, please use dataset[0] instead.
  warnings.warn('Property {} will be deprecated, please use {} instead.'.format(old, new))
/usr/local/lib/python3.7/dist-packages/dgl/data/utils.py:286: UserWarning: Property dataset.feat will be deprecated, please use g.ndata['feat'] instead.
  warnings.warn('Property {} will be deprecated, please use {} instead.'.format(old, new))
/usr/local/lib/python3.7/dist-packages/dgl/data/utils.py:286: UserWarning: Property dataset.num_labels will be deprecated, please use dataset.num_classes instead.
  warnings.warn('Property {} will be deprecated, please use {} instead.'.format(old, new))

设置 DGL-PyTorch 模型以取得最好的结果

https://github.com/dmlc/dgl/blob/master/examples/pytorch/gcn/train.py 训练权重。

from tvm.contrib.download import download_testdata

features = torch.FloatTensor(features)

torch_model = GCN(dgl_g, infeat_dim, num_hidden, num_classes, num_layers, F.relu)

# 下载预训练的权重
model_url = "https://homes.cs.washington.edu/~cyulin/media/gnn_model/gcn_cora.torch"
model_path = download_testdata(model_url, "gcn_cora.pickle", module="gcn_model")

# 将 weights 加载到模型中
torch_model.load_state_dict(torch.load(model_path))

输出结果:

/usr/local/lib/python3.7/dist-packages/dgl/data/utils.py:286: UserWarning: Property dataset.feat will be deprecated, please use g.ndata['feat'] instead.
  warnings.warn('Property {} will be deprecated, please use {} instead.'.format(old, new))
/usr/local/lib/python3.7/dist-packages/dgl/base.py:45: DGLWarning: Recommend creating graphs by `dgl.graph(data)` instead of `dgl.DGLGraph(data)`.
 return warnings.warn(message, category=category, stacklevel=1)

<All keys matched successfully>

运行 DGL 模型并测试准确性

torch_model.eval()
with torch.no_grad():
    logits_torch = torch_model(features)
print("Print the first five outputs from DGL-PyTorch execution\n", logits_torch[:5])

acc = evaluate(dgl_g, logits_torch.numpy())
print("Test accuracy of DGL results: {:.2%}".format(acc))

输出结果:

Print the first five outputs from DGL-PyTorch execution
 tensor([[-0.2198, -0.7980,  0.0784,  0.9232, -0.9319, -0.7733,  0.9410],
 [-0.4646, -0.6606, -0.1732,  1.1829, -0.3705, -0.5535,  0.0858],
 [-0.0031, -0.4156,  0.0175,  0.4765, -0.5887, -0.3609,  0.2278],
 [-0.8559, -0.8860,  1.4782,  0.9262, -1.3100, -1.0960, -0.0908],
 [-0.0702, -1.1651,  1.1453, -0.3586, -0.4938, -0.2288,  0.1827]])
/usr/local/lib/python3.7/dist-packages/dgl/data/utils.py:286: UserWarning: Property dataset.test_mask will be deprecated, please use g.ndata['test_mask'] instead.
  warnings.warn('Property {} will be deprecated, please use {} instead.'.format(old, new))
/usr/local/lib/python3.7/dist-packages/dgl/data/utils.py:286: UserWarning: Property dataset.label will be deprecated, please use g.ndata['label'] instead.
  warnings.warn('Property {} will be deprecated, please use {} instead.'.format(old, new))
Test accuracy of DGL results: 10.00%

在 Relay 中定义图卷积层

在 TVM 上运行 GCN 之前,首先实现 Graph Convolution Layer。参考 https://github.com/dmlc/dgl/blob/master/python/dgl/nn/mxnet/conv/graphconv.py 了解在 DGL 中使用 MXNet 后端实现的 GraphConv 层的更多信息。

该层由以下操作定义。注意:我们用两个转置来保持 sparse_dense 算子右侧的邻接矩阵,此方法是临时的,接下来几周内会更新稀疏矩阵转置,使得支持左稀疏算子。

ℎ ( , , )= ∗ ∗ =(( ∗ ) ∗ ) =(( ∗ )∗ ) GraphConv(A,H,W)=A∗H∗W=((H∗W)t∗At)t=((Wt∗Ht)∗At)t

from tvm import relay
from tvm.contrib import graph_executor
import tvm
from tvm import te

def GraphConv(layer_name, input_dim, output_dim, adj, input, norm=None, bias=True, activation=None):
 """
    参数
    ----------
    layer_name: str
    图层名称

    input_dim: int
    每个节点特征的输入维度

    output_dim: int,
    每个节点特征的输出维度

    adj: namedtuple,
    稀疏格式的图形表示(邻接矩阵)(`data`,`indices`,`indptr`),其中`data`的 shape 为[num_nonzeros],indices`的 shape 为[num_nonzeros],`indptr`的 shape 为[num_nodes + 1]

    input: relay.Expr,
    shape 为 [num_nodes, input_dim] 的当前层的输入特征

    norm: relay.Expr,
    范数传给该层,对卷积前后的特征进行归一化。

    bias: bool
    将 bias 设置为 True,在处理 GCN 层时添加偏差

    activation: <function relay.op.nn>,
    激活函数适用于输出,例如 relay.nn.{relu,sigmoid,log_softmax,softmax,leaky_relu}

    返回
    ----------
    输出:tvm.relay.Expr
    该层的输出张量 [num_nodes, output_dim]
    """
 if norm is not None:
 input = relay.multiply(input, norm)

    weight = relay.var(layer_name + ".weight", shape=(input_dim, output_dim))
    weight_t = relay.transpose(weight)
    dense = relay.nn.dense(weight_t, input)
    output = relay.nn.sparse_dense(dense, adj)
    output_t = relay.transpose(output)
 if norm is not None:
        output_t = relay.multiply(output_t, norm)
 if bias is True:
        _bias = relay.var(layer_name + ".bias", shape=(output_dim, 1))
        output_t = relay.nn.bias_add(output_t, _bias, axis=-1)
 if activation is not None:
        output_t = activation(output_t)
 return output_t

准备 GraphConv 层所需的参数

import numpy as np
import networkx as nx

def prepare_params(g):
    params = {}
    params["infeats"] = g.ndata["feat"].numpy().astype("float32")

 # 生成邻接矩阵
    nx_graph = dgl.to_networkx(g)
    adjacency = nx.to_scipy_sparse_array(nx_graph)
    params["g_data"] = adjacency.data.astype("float32")
    params["indices"] = adjacency.indices.astype("int32")
    params["indptr"] = adjacency.indptr.astype("int32")

 # 标准化 w.r.t.节点的度
    degs = [g.in_degrees(i) for i in range(g.number_of_nodes())]
    params["norm"] = np.power(degs, -0.5).astype("float32")
    params["norm"] = params["norm"].reshape((params["norm"].shape[0], 1))

 return params

params = prepare_params(dgl_g)

# 检查特征的 shape 和邻接矩阵的有效性
assert len(params["infeats"].shape) == 2
assert (
    params["g_data"] is not None and params["indices"] is not None and params["indptr"] is not None
)
assert params["infeats"].shape[0] == params["indptr"].shape[0] - 1


输出结果:
/usr/local/lib/python3.7/dist-packages/dgl/data/utils.py:286: UserWarning: Property dataset.feat will be deprecated, please use g.ndata['feat'] instead.
  warnings.warn('Property {} will be deprecated, please use {} instead.'.format(old, new))

逐层叠加

# 在 Relay 中定义输入特征、范数、邻接矩阵
infeats = relay.var("infeats", shape=features.shape)
norm = relay.Constant(tvm.nd.array(params["norm"]))
g_data = relay.Constant(tvm.nd.array(params["g_data"]))
indices = relay.Constant(tvm.nd.array(params["indices"]))
indptr = relay.Constant(tvm.nd.array(params["indptr"]))

Adjacency = namedtuple("Adjacency", ["data", "indices", "indptr"])
adj = Adjacency(g_data, indices, indptr)

# 构建 2 层 GCN
layers = []
layers.append(
    GraphConv(
        layer_name="layers.0",
        input_dim=infeat_dim,
        output_dim=num_hidden,
        adj=adj,
 input=infeats,
        norm=norm,
        activation=relay.nn.relu,
 )
)
layers.append(
    GraphConv(
        layer_name="layers.1",
        input_dim=num_hidden,
        output_dim=num_classes,
        adj=adj,
 input=layers[-1],
        norm=norm,
        activation=None,
 )
)

# 分析自由变量并生成 Relay 函数
output = layers[-1]

输出结果:

/usr/local/lib/python3.7/dist-packages/dgl/data/utils.py:286: UserWarning: Property dataset.feat will be deprecated, please use g.ndata['feat'] instead.
  warnings.warn('Property {} will be deprecated, please use {} instead.'.format(old, new))

使用 TVM 编译和运行

将权重从 PyTorch 模型导出到 Python 字典:

model_params = {}
for param_tensor in torch_model.state_dict():
    model_params[param_tensor] = torch_model.state_dict()[param_tensor].numpy()

for i in range(num_layers + 1):
    params["layers.%d.weight" % (i)] = model_params["layers.%d.weight" % (i)]
    params["layers.%d.bias" % (i)] = model_params["layers.%d.bias" % (i)]

# 设置 TVM 构建 target
target = "llvm" # 目前只支持 `llvm` 作为目标

func = relay.Function(relay.analysis.free_vars(output), output)
func = relay.build_module.bind_params_by_name(func, params)
mod = tvm.IRModule()
mod["main"] = func
# 使用 Relay 构建
with tvm.transform.PassContext(opt_level=0): # 目前只支持 opt_level=0
    lib = relay.build(mod, target, params=params)

# 生成图执行器
dev = tvm.device(target, 0)
m = graph_executor.GraphModule(lib["default"](dev))

运行 TVM 模型,测试准确性并使用 DGL 进行验证

m.run()
logits_tvm = m.get_output(0).numpy()
print("Print the first five outputs from TVM execution\n", logits_tvm[:5])

acc = evaluate(dgl_g, logits_tvm)
print("Test accuracy of TVM results: {:.2%}".format(acc))

import tvm.testing

# 使用 DGL 模型验证结果
tvm.testing.assert_allclose(logits_torch, logits_tvm, atol=1e-3)

输出结果:

Print the first five outputs from TVM execution
 [[-0.21976954 -0.7979525   0.07836491  0.9232204  -0.93188703 -0.7732947
   0.9410008 ]
 [-0.4645713  -0.66060466 -0.17316166  1.1828876  -0.37051404 -0.5534965
   0.08579484]
 [-0.00308266 -0.41562504  0.0175378   0.47649348 -0.5886737  -0.3609016
   0.22782072]
 [-0.8559376  -0.8860172   1.4782399   0.9262254  -1.3099641  -1.0960144
  -0.09084877]
 [-0.07015878 -1.1651071   1.1452857  -0.35857323 -0.49377596 -0.22878847
   0.18269953]]
/usr/local/lib/python3.7/dist-packages/dgl/data/utils.py:286: UserWarning: Property dataset.label will be deprecated, please use g.ndata['label'] instead.
  warnings.warn('Property {} will be deprecated, please use {} instead.'.format(old, new))
/usr/local/lib/python3.7/dist-packages/dgl/data/utils.py:286: UserWarning: Property dataset.test_mask will be deprecated, please use g.ndata['test_mask'] instead.
  warnings.warn('Property {} will be deprecated, please use {} instead.'.format(old, new))
Test accuracy of TVM results: 10.00%

下载 Python 源代码:build_gcn.py

下载 Jupyter Notebook:build_gcn.ipynb

标签:教程,relay,卷积,dgl,TVM,params,instead,output,data
From: https://blog.51cto.com/u_16060192/11869409

相关文章

  • Adobe Photoshop PS v25.6 激活版下载安装教程 (图像设计工具)
    前言AdobePhotoshop是一款专业强大的图片处理工具,从照片编辑和合成到数字绘画、动画和图形设计,一流的图像处理和图形设计应用程序是几乎每个创意项目的核心所在。利用Photoshop在桌面上的强大功能,您可以在灵感来袭时随时随地进行创作。一、下载地址2024v25.6下载:Adobe-Phot......
  • Autodesk 3DS Max v2025 激活版下载及安装教程 (3D 建模工具)
    前言Autodesk3dsMax是一款功能强大的3D建模和动画解决方案,游戏开发人员、视觉效果艺术家和平面设计师使用它来创建庞大的世界、令人惊叹的场景和引人入胜的虚拟现实(VR)体验。Autodesk3DSMAX是业界使用最广泛的3D建模和动画软件程序之一,它将为用户提供一系列新功能和工......
  • gstreamer教程(8)——构建应用之Pad和Pad的能力集
    Pad和能力集:正如我们在 Elements 中看到的那样,pad是Element与外部世界的接口。数据从一个Element的sourcepad流向另一个Element的sinkpad。元素可以处理的媒体类型都是通过pad的能力集公布的。我们将在本章后面详细讨论功能(参见 pad的功能)。Pad:pad类......
  • GEE 更新和优化:利用GEE在线处理1985-2024年NDVI、EVI、SAVI、NDMI等指数归一化教程!(Lan
    简介本次的归一化教程,优化了数据去云,预处理等过程,同事将landsat5/7/8集合分别进行了数据整合,也就是原始波段的处理,从而我们可以调用1985-至今任何一个时期的影像进行归一化处理。具体的原文介绍请看原始的博客原始博客利用GEE(GoogleEarthEngine)在线处理NDVI、EVI、SAVI......
  • YOLOv8添加DCNv4可变性卷积(windows系统成功编译),全网最详细教程
    原论文摘要引入了可变形卷积v4(DCNv4),这是一种为广泛视觉应用设计的高效且有效的操作算子。DCNv4通过两项关键增强解决了其前身DCNv3的局限性:1.移除空间聚合中的softmax归一化,以增强其动态特性和表达能力;2.优化内存访问以最小化冗余操作,从而加速计算。这些改进使得DC......
  • YOLOv9添加DCNv4可变性卷积与RepNCSPELAN4结构融合(windows系统成功编译),全网最详细教
    前言引入了可变形卷积v4(DCNv4),这是一种为广泛视觉应用设计的高效且有效的操作算子。DCNv4通过两项关键增强解决了其前身DCNv3的局限性:1.移除空间聚合中的softmax归一化,以增强其动态特性和表达能力;2.优化内存访问以最小化冗余操作,从而加速计算。这些改进使得DCNv4相......
  • YOLOv10改进系列,YOLOv10添加DCNv4可变性卷积(windows系统成功编译),全网最详细教程
    原论文摘要引入了可变形卷积v4(DCNv4),这是一种为广泛视觉应用设计的高效且有效的操作算子。DCNv4通过两项关键增强解决了其前身DCNv3的局限性:1.移除空间聚合中的softmax归一化,以增强其动态特性和表达能力;2.优化内存访问以最小化冗余操作,从而加速计算。这些改进使得DC......
  • 【ROS教程】服务通信
    @目录1.流程2.自定义请求和响应的数据2.1std_msgs内置类型2.2编写.srv文件2.3修改package.xml文件2.4修改CMakeLists.txt文件2.4.1修改find_package指令2.4.2添加add_message_files指令2.4.3添加generate_messages指令2.5查看头文件3.编写cpp文件3.1功能包目录文件树3.2......
  • Mac上HomeBrew安装及换源教程
    Mac上HomeBrew安装及换源教程        Mac的MacOS系统来源于Unix系统,得益于此Mac系统的使用类似于Linux,因此Linux系统中的包管理概念也适用于Mac,而HomeBrew便是其中的一个优秀的包管理工具,而包管理工具是什么呢?软件包管理工具,拥有安装、卸载、更新、查看、搜索等功能,在终......
  • 黑马JavaWeb开发笔记09——ElementUI代码引入教程、Element常用组件使用(Table, Pagina
    文章目录前言ElementUI1.快速入门(代码引入教程)2.组件:Table表格3.组件:Pagination分页4.组件:Dialog对话框5.组件:Form表单总结前言本篇文章是2023年最新黑马JavaWeb开发笔记09:ElementUI代码进入教程、常用组件使用的总结,帮助需要学习Web开发的朋友温故而知新。El......