大家好,我是欧K~
中秋节,又称祭月节、月光诞、月夕、秋节、仲秋节、拜月节、月娘节、月亮节、团圆节等,是中国民间的传统节日。自古便有祭月、赏月、吃月饼、玩花灯、赏桂花、饮桂花酒等民俗,流传至今,经久不息。
本期我们通过分析某宝中秋月饼的销售情况,看看哪些口味月饼卖得好,哪些地方月饼卖得好,希望对小伙伴们有所帮助。
涉及到的库:
- Pandas — 数据处理
- Pyecharts — 数据可视化
- jieba — 分词
- collections — 数据统计
可视化部分:
- Bar — 柱状图
- Pie — 饼状图
- Map— 地图
- Stylecloud — 词云图
1. 导入模块
import re import jieba import stylecloud import numpy as np import pandas as pd from collections import Counter from pyecharts.charts import Bar from pyecharts.charts import Map from pyecharts.charts import Pie from pyecharts.charts import Grid from pyecharts.charts import Page from pyecharts.components import Image from pyecharts.charts import WordCloud from pyecharts import options as opts from pyecharts.globals import SymbolType from pyecharts.commons.utils import JsCode
2. Pandas数据处理
2.1 读取数据
df = pd.read_excel("月饼.xlsx") df.head(10)
结果:
2.2 去除重复值
print(df.shape) df.drop_duplicates(inplace=True) print(df.shape)
(4520, 5)
(1885, 5)
一共有4520条数据,去重后还有1885条数据(某宝一个店铺会在不同页面推荐,导致重复数据比较多)。
2.3 空值处理
处理购买人数为空的记录:
df['付款情况'] = df['付款情况'].replace(np.nan,'0人付款')
2.4 处理付款情况字段
df[df['付款情况'].str.contains("万")]
付款人数超过10000后会直接用"万"替代,这里我们需要将其恢复:
# 提取数值 # 提取单位(万) df['unit'] = [''.join(re.findall(r'(万)', i)) for i in df['付款情况']] df['unit'] = df['unit'].apply(lambda x:10000 if x=='万' else 1) # 计算销量 df['销量'] = df['num'] * df['unit'] df = df[df['地址'].notna()] df['省份'] = df['地址'].str.split(' ').apply(lambda x:x[0]) # 删除多余的列 df.drop(['付款情况', 'num', 'unit'], axis=1, inplace=True) # 重置索引 df = df.reset_index(drop=True)
结果:
3. Pyecharts数据可视化
3.1 月饼商品销量Top10
代码:
shop_top10 = df.groupby('商品名称')['销量'].sum().sort_values(ascending=False).head(10) bar0 = ( Bar() .add_xaxis(shop_top10.index.tolist()[::-1]) .add_yaxis('sales_num', shop_top10.values.tolist()[::-1]) .reversal_axis() .set_global_opts(title_opts=opts.TitleOpts(title='月饼商品销量Top10'), xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-30))) .set_series_opts(label_opts=opts.LabelOpts(position='right')) )
效果:
商品名称太长显示不全,我们调整一下边距:
def get_bar1(): bar1 = ( Bar() .add_xaxis(shop_top10.index.tolist()[::-1]) .add_yaxis('sales_num', shop_top10.values.tolist()[::-1],itemstyle_opts=opts.ItemStyleOpts(color=JsCode(color_js))) .reversal_axis() .set_global_opts(title_opts=opts.TitleOpts(title='月饼商品销量Top10'), xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-30)), ) .set_series_opts(label_opts=opts.LabelOpts(position='right')) ) # 将图形整体右移 grid = ( Grid() .add(bar1, grid_opts=opts.GridOpts(pos_left='45%', pos_right='10%')) )
这样是不是好多了。
还可以来些其他(比如:形状)设置:
3.2 月饼销量排名TOP10店铺
代码:
def get_bar3():
bar3 = (
Bar(init_opts=opts.InitOpts(
width='800px', height='600px',))
.add_xaxis(shop_top10.index.tolist())
.add_yaxis('', shop_top10.values.tolist(),
category_gap='30%',
)
.set_global_opts(
xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-30)),
title_opts=opts.TitleOpts(
title='月饼销量排名TOP10店铺',
pos_left='center',
pos_top='4%',
title_textstyle_opts=opts.TextStyleOpts(
color='#ed1941', font_size=16)
),
visualmap_opts=opts.VisualMapOpts(
is_show=False,
max_=600000,
range_color=["#CCD3D9", "#E6B6C2", "#D4587A","#FF69B4", "#DC364C"]
),
)
)
bar3.render_notebook()
效果:
稻香村的月饼销量遥遥领先。
3.3 全国各地区月饼销量
def get_map_chart(): map_chart = Map(init_opts=opts.InitOpts(theme='light', width='800px', height='600px')) map_chart.add('', [list(z) for z in zip(province_num.index.tolist(), province_num.values.tolist())], maptype='china', is_map_symbol_show=False, itemstyle_opts={ 'normal': { 'shadowColor': 'rgba(0, 0, 0, .5)', # 阴影颜色 'shadowBlur': 5, # 阴影大小 'shadowOffsetY': 0, # Y轴方向阴影偏移 'shadowOffsetX': 0, # x轴方向阴影偏移 'borderColor': '#fff' } } ) map_chart.set_global_opts( visualmap_opts=opts.VisualMapOpts( is_show=True, is_piecewise=True, min_ = 0, max_ = 1, split_number = 5, series_index=0, pos_top='70%', pos_left='10%', range_text=['销量(份):', ''], pieces=[ {'max':2000000, 'min':200000, 'label':'> 200000', 'color': '#990000'}, {'max':200000, 'min':100000, 'label':'100000-200000', 'color': '#CD5C5C'}, {'max':100000, 'min':50000, 'label':'50000-100000', 'color': '#F08080'}, {'max':50000, 'min':10000, 'label':'10000-50000', 'color': '#FFCC99'}, {'max':10000, 'min':0, 'label':'0-10000', 'color': '#FFE4E1'}, ], ), legend_opts=opts.LegendOpts(is_show=False), tooltip_opts=opts.TooltipOpts( is_show=True, trigger='item', formatter='{b}:{c}' ), title_opts=dict( text='全国各地区月饼销量', left='center', top='5%', textStyle=dict( color='#DC143C')) ) map_chart.render_notebook()
结果:
从地域分布图来看,店铺主要分布在北京、山东、浙江、广东、云南等东南地区。
3.4 不同价格区间的月饼销量占比
可以看到,50元以下的月饼销量占比达到了52%,超过了半数的月饼售价在50元以内,100元以下的月饼销量占比更是达到了85%之多,虽然也有价格在1000元以上的,但整体价格还是比较实惠的。
3.5 月饼口味分布
流心、五仁、蛋黄莲蓉、豆沙 yyds!!!
3.6 词云图
4. 源码下载
标签:01,pyecharts,月饼,df,color,可视化,import,opts From: https://www.cnblogs.com/ouzai/p/18382634