首页 > 其他分享 >书生大模型实战营3期 - 进阶岛 - 6 - MindSearch 快速部署

书生大模型实战营3期 - 进阶岛 - 6 - MindSearch 快速部署

时间:2024-08-27 11:22:44浏览次数:16  
标签:MindSearch 进阶 return gr agent 书生 mindsearch history

文章目录

闯关任务

任务描述:MindSearch CPU-only 版部署
任务文档:MindSearch CPU-only 版部署

完成结果

  • 按照教程,将 MindSearch 部署到 HuggingFace,并提供截图。

新建一个目录用于存放 MindSearch 的相关代码,并把 MindSearch 仓库 clone 下来:

mkdir -p /root/mindsearch
cd /root/mindsearch
git clone https://github.com/InternLM/MindSearch.git
cd MindSearch && git checkout b832275 && cd ..

环境配置:

# 创建环境
conda create -n mindsearch python=3.10 -y
# 激活环境
conda activate mindsearch
# 安装依赖
pip install -r /root/mindsearch/MindSearch/requirements.txt

获取硅基流动 API Key:

首先,我们打开 https://account.siliconflow.cn/login 来注册硅基流动的账号(如果注册过,则直接登录即可)。
在完成注册后,打开 https://cloud.siliconflow.cn/account/ak 来准备 API Key。首先创建新 API 密钥,然后点击密钥进行复制,以备后续使用。

启动 MindSearch:
(1) 启动后端;

export SILICON_API_KEY=第二步中复制的密钥
conda activate mindsearch
cd /root/mindsearch/MindSearch
python -m mindsearch.app --lang cn --model_format internlm_silicon --search_engine DuckDuckGoSearch

请添加图片描述
(2) 启动前端;

conda activate mindsearch
cd /root/mindsearch/MindSearch
python frontend/mindsearch_gradio.py

请添加图片描述

(3) 我们把 8002 端口和 7882 端口都映射到本地;

ssh -CNg -L 8002:127.0.0.1:8002 -L 7882:127.0.0.1:7882 [email protected] -p <你的 SSH 端口号>

(4) 在本地浏览器中打开 localhost:7882 即可体验;
请添加图片描述

部署到github codespace:
(1) 打开codespace主页,选择blank template;
在这里插入图片描述

(2) 浏览器会自动在新的页面打开一个web版的vscode;
在这里插入图片描述

(3) 按照上述过程clone MindSearch仓库、配置环境和获取硅基流动 API Key;

(4) 启动后端和启动前端;
请添加图片描述
请添加图片描述
前后端都启动后,我们应该可以看到github自动为这两个进程做端口转发;
请添加图片描述

(5) 不需要使用ssh端口转发,github会自动提示打开一个在公网的前端地址即可体验;
请添加图片描述

部署到 HuggingFace Space:
(1) 首先打开 https://huggingface.co/spaces ,并点击 Create new Space,如下图所示;
在这里插入图片描述

(2) 在输入 Space name 并选择 License 后,选择配置如下所示;
在这里插入图片描述
(3) 进入 Settings,配置硅基流动的 API Key,如下图所示;
在这里插入图片描述

(4) 选择 New secrets,name 一栏输入 SILICON_API_KEY,value 一栏输入你的 API Key 的内容;
在这里插入图片描述

(5) 先新建一个目录,准备提交到 HuggingFace Space 的全部文件。

# 创建新目录
mkdir -p /root/mindsearch/mindsearch_deploy
# 准备复制文件
cd /root/mindsearch
cp -r /root/mindsearch/MindSearch/mindsearch /root/mindsearch/mindsearch_deploy
cp /root/mindsearch/MindSearch/requirements.txt /root/mindsearch/mindsearch_deploy
# 创建 app.py 作为程序入口
touch /root/mindsearch/mindsearch_deploy/app.py

app.py文件的内容如下:

import json
import os

import gradio as gr
import requests
from lagent.schema import AgentStatusCode

os.system("python -m mindsearch.app --lang cn --model_format internlm_silicon &")

PLANNER_HISTORY = []
SEARCHER_HISTORY = []


def rst_mem(history_planner: list, history_searcher: list):
    '''
    Reset the chatbot memory.
    '''
    history_planner = []
    history_searcher = []
    if PLANNER_HISTORY:
        PLANNER_HISTORY.clear()
    return history_planner, history_searcher


def format_response(gr_history, agent_return):
    if agent_return['state'] in [
            AgentStatusCode.STREAM_ING, AgentStatusCode.ANSWER_ING
    ]:
        gr_history[-1][1] = agent_return['response']
    elif agent_return['state'] == AgentStatusCode.PLUGIN_START:
        thought = gr_history[-1][1].split('```')[0]
        if agent_return['response'].startswith('```'):
            gr_history[-1][1] = thought + '\n' + agent_return['response']
    elif agent_return['state'] == AgentStatusCode.PLUGIN_END:
        thought = gr_history[-1][1].split('```')[0]
        if isinstance(agent_return['response'], dict):
            gr_history[-1][
                1] = thought + '\n' + f'```json\n{json.dumps(agent_return["response"], ensure_ascii=False, indent=4)}\n```'  # noqa: E501
    elif agent_return['state'] == AgentStatusCode.PLUGIN_RETURN:
        assert agent_return['inner_steps'][-1]['role'] == 'environment'
        item = agent_return['inner_steps'][-1]
        gr_history.append([
            None,
            f"```json\n{json.dumps(item['content'], ensure_ascii=False, indent=4)}\n```"
        ])
        gr_history.append([None, ''])
    return


def predict(history_planner, history_searcher):

    def streaming(raw_response):
        for chunk in raw_response.iter_lines(chunk_size=8192,
                                             decode_unicode=False,
                                             delimiter=b'\n'):
            if chunk:
                decoded = chunk.decode('utf-8')
                if decoded == '\r':
                    continue
                if decoded[:6] == 'data: ':
                    decoded = decoded[6:]
                elif decoded.startswith(': ping - '):
                    continue
                response = json.loads(decoded)
                yield (response['response'], response['current_node'])

    global PLANNER_HISTORY
    PLANNER_HISTORY.append(dict(role='user', content=history_planner[-1][0]))
    new_search_turn = True

    url = 'http://localhost:8002/solve'
    headers = {'Content-Type': 'application/json'}
    data = {'inputs': PLANNER_HISTORY}
    raw_response = requests.post(url,
                                 headers=headers,
                                 data=json.dumps(data),
                                 timeout=20,
                                 stream=True)

    for resp in streaming(raw_response):
        agent_return, node_name = resp
        if node_name:
            if node_name in ['root', 'response']:
                continue
            agent_return = agent_return['nodes'][node_name]['detail']
            if new_search_turn:
                history_searcher.append([agent_return['content'], ''])
                new_search_turn = False
            format_response(history_searcher, agent_return)
            if agent_return['state'] == AgentStatusCode.END:
                new_search_turn = True
            yield history_planner, history_searcher
        else:
            new_search_turn = True
            format_response(history_planner, agent_return)
            if agent_return['state'] == AgentStatusCode.END:
                PLANNER_HISTORY = agent_return['inner_steps']
            yield history_planner, history_searcher
    return history_planner, history_searcher


with gr.Blocks() as demo:
    gr.HTML("""<h1 align="center">MindSearch Gradio Demo</h1>""")
    gr.HTML("""<p style="text-align: center; font-family: Arial, sans-serif;">MindSearch is an open-source AI Search Engine Framework with Perplexity.ai Pro performance. You can deploy your own Perplexity.ai-style search engine using either closed-source LLMs (GPT, Claude) or open-source LLMs (InternLM2.5-7b-chat).</p>""")
    gr.HTML("""
    <div style="text-align: center; font-size: 16px;">
        <a href="https://github.com/InternLM/MindSearch" style="margin-right: 15px; text-decoration: none; color: #4A90E2;">

标签:MindSearch,进阶,return,gr,agent,书生,mindsearch,history
From: https://blog.csdn.net/wocsdn111/article/details/141434094

相关文章