首页 > 其他分享 >AD7606芯片驱动-FPGA实现

AD7606芯片驱动-FPGA实现

时间:2024-08-22 12:24:33浏览次数:21  
标签:sample en FPGA 芯片 AD7606 adc reg channel ADC

        简介

        AD7606是一款16位ADC芯片,可实现8通道并行采集,每通道最大速度可达1M,可实现多种模式数据采集。

        介绍

        本次FPGA使用的是8通道串行采样模式,设计中所用到的AD7606引脚说明如下:

名称定义
CONVST同步采集转换开始信号
BUSYADC忙碌状态信号
RD/SCLK采样/寄存器工作时钟
CS片选使能
DOUTA~DOUTH

ADC 8通道串行输出

SDI寄存器数据输入

 本次采用的寄存器读写时序如下图所示:

 1、寄存器读写第一位默认为0;

2、第二位代表寄存器读写位,0代表写寄存器,1代表读寄存器;

3、6个地址位,具体寄存器定义查阅芯片手册;

4、如果是写操作,后面8bit为寄存器值,如果是读操作则通过DoutA接口读取返回的寄存器数据。

5、该芯片支持CRC模式,本次设计默认不启动CRC模式,所以后面8bitCRC在普通模式下不存在。

采样时序如下图所示:

                        

本时序图发现如下两个问题:

1、DoutA~DoutH输出的应该是V1~V7数据,上图中标识有错误;

2、上图未标识CONVST和BUSY信号,显然这两个信号是必须存在的;

另外芯片引脚OS0~OS2都接高点平,进入Enters software mode模式。

代码

FPGA驱动代码如下:

`timescale 1ns / 1ps
//
// Company: 
// Engineer: 
// 
// Create Date: 2024/08/05 15:39:27
// Design Name: 
// Module Name: ADC_SLAVE_DRI_TOP
// Project Name: 
// Target Devices: 
// Tool Versions: 
// Description: 
// 
// Dependencies: 
// 
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
// 
//


module ADC_SLAVE_DRI_TOP(
    input sys_clk,
    input sys_rst_n,

	output reg ADC_CONVST,
	input ADC_BUSY,
	output ADC_SCLK,
	output ADC_CS,
	input ADC_FRSTDATA,
	input[7:0] ADC_DATA,[7]:a [6]:b [5]:c ......
	output ADC_SDI,
	
	reg set
	input[15:0] adc_frame_length,
	
	input[15:0] adc_tdata_reg,
	input[15:0] adc_sample_rate_h,
	input[15:0] adc_sample_rate_l,	
	ADC REC REG DATA
	output[7:0] adc_rec_reg_data,
	output adc_rec_reg_data_en,
	input[3:0] adc_rw_set,//[1]:sample [0]:reg w/r
	input[15:0] adc_sample_rate_reg,
	input[15:0] adc_sample_channel_en_reg,
	ADC SAMPLE DATA	
	output[15:0] rx_data_length,
	output [7:0] axis_adc_data,
	output  axis_adc_tvalid,
	output  axis_adc_tlast	
	
    );

parameter ADC_CONVST_num = 'd100;	
	
	
reg[7:0] spi_tdata;
reg spi_tvalid;
reg tx_reg_en_r1;
wire[31:0] ADC_SAMPLE_RATE;
reg[31:0]sample_cnt;
reg tx_reg_wr_r1;
reg tx_reg_rd_r1;
wire tx_reg_wr;
wire tx_reg_rd;
wire sample_en;
reg ADC_BUSY_r1;
reg ADC_BUSY_r2;
reg ADC_BUSY_r3;
reg ADC_BUSY_r4;
reg ADC_BUSY_r5;
wire ADC_BUSY_neg;

reg[15:0]rec_adc_a_sample_data;
reg[15:0]rec_adc_b_sample_data;
reg[15:0]rec_adc_c_sample_data;
reg[15:0]rec_adc_d_sample_data;
reg[15:0]rec_adc_e_sample_data;
reg[15:0]rec_adc_f_sample_data;
reg[15:0]rec_adc_g_sample_data;
reg[15:0]rec_adc_h_sample_data;
reg rec_adc_sample_en;
reg ADC_SCLK_i;
reg ADC_CS_i;
reg[3:0] adc_mode;
reg[31:0] sample_en_delay;
reg[31:0] adc_stop_delay;

reg[15:0] rec_data_cnt;

reg[7:0] s_axis_tdata;
reg s_axis_tvalid;
wire s_axis_tlast;
reg[15:0] s_axis_tvalid_cnt;


reg[15:0] spi_clk_cnt;
reg[15:0] clk_cnt;

reg sample_en_r1;
reg sample_en_r2;
wire sample_en_neg;
wire[13:0] axis_data_count;


reg fifo_rst_n;
reg[15:0] fifo_rst_cnt;
reg fifo_rst_en;

wire channel_a_en;
wire channel_b_en;
wire channel_c_en;
wire channel_d_en;
wire channel_e_en;
wire channel_f_en;
wire channel_g_en;
wire channel_h_en;


assign channel_a_en = adc_sample_channel_en_reg[7];
assign channel_b_en = adc_sample_channel_en_reg[6];
assign channel_c_en = adc_sample_channel_en_reg[5];
assign channel_d_en = adc_sample_channel_en_reg[4];
assign channel_e_en = adc_sample_channel_en_reg[3];
assign channel_f_en = adc_sample_channel_en_reg[2];
assign channel_g_en = adc_sample_channel_en_reg[1];
assign channel_h_en = adc_sample_channel_en_reg[0];



assign rx_data_length = adc_frame_length;
assign tx_reg_wr = adc_rw_set[0];
assign tx_reg_rd = adc_rw_set[1];
assign sample_en = adc_rw_set[2];
assign ADC_SAMPLE_RATE = {adc_sample_rate_h,adc_sample_rate_l};
assign ADC_BUSY_neg = (~ADC_BUSY_r4) && ADC_BUSY_r5;

assign ADC_SCLK = (adc_mode == 'd3)?ADC_SCLK_i:ADC_SCLK_ii;
assign ADC_CS = (adc_mode == 'd3)?ADC_CS_i:ADC_CS_ii;
assign sample_en_neg = sample_en_r2 && (~sample_en_r1);

assign s_axis_tlast = (s_axis_tvalid_cnt == adc_frame_length - 'd1)?1'b1:1'b0;


always@(posedge sys_clk or negedge sys_rst_n)begin
	if(sys_rst_n == 'D0)begin 
		adc_mode <= 'd0;
	end
	else if(tx_reg_wr == 'd1)begin
		adc_mode <= 'd1;	
	end
	else if(tx_reg_rd == 'd1)begin
		adc_mode <= 'd2;
	end
	else if(sample_en == 'd1)begin
		adc_mode <= 'd3;
	end
end
	

 reg set
always@(posedge sys_clk)begin
	tx_reg_wr_r1 <= tx_reg_wr;
	tx_reg_rd_r1 <= tx_reg_rd;
end	


always@(posedge sys_clk or negedge sys_rst_n)begin
	if(sys_rst_n == 'D0)begin  
		spi_tdata <= 'd0;
		spi_tvalid <= 'd0;
	end
	else if(tx_reg_wr == 'd1)begin
		spi_tdata <= {2'b00,adc_tdata_reg[13:8]};
		spi_tvalid <= 'd1;
	end
	else if(tx_reg_rd == 'd1)begin
		spi_tdata <= {2'b01,adc_tdata_reg[13:8]};
		spi_tvalid <= 'd1;
	end
	else if(tx_reg_wr_r1 == 'd1 || tx_reg_rd_r1 == 'd1)begin
		spi_tdata <= adc_tdata_reg[7:0];
		spi_tvalid <= 'd1;		
	end
	else begin
		spi_tdata <= 'd0;
		spi_tvalid <= 'd0;		
	end
end
 	
	

 sample

always@(posedge sys_clk)begin
	ADC_BUSY_r1 <= ADC_BUSY;
	ADC_BUSY_r2 <= ADC_BUSY_r1;
	ADC_BUSY_r3 <= ADC_BUSY_r2;
	ADC_BUSY_r4 <= ADC_BUSY_r3;
	ADC_BUSY_r5 <= ADC_BUSY_r4;
	sample_en_r1 <= sample_en;
	sample_en_r2 <= sample_en_r1;
end


always@(posedge sys_clk or negedge sys_rst_n)begin
	if(sys_rst_n == 'D0)begin  
		sample_cnt <= 'd0;
	end
	else if(sample_cnt >= ADC_SAMPLE_RATE - 'd1)begin
		sample_cnt <= 'd0;
	end
	else if(sample_en == 'd1)begin
		sample_cnt <= sample_cnt + 'd1;
	end
	else begin
		sample_cnt <= 'd0;
	end
end
	
	
always@(posedge sys_clk or negedge sys_rst_n)begin
	if(sys_rst_n == 'D0)begin  
		ADC_CONVST <= 'd0;
	end
	else if(sample_cnt < ADC_CONVST_num + 'd10 && sample_cnt >= 'd10 && sample_en == 'd1)begin
		ADC_CONVST <= 'd1;
	end
	else begin
		ADC_CONVST <= 'd0;
	end
end




always@(posedge sys_clk or negedge sys_rst_n)begin
	if(sys_rst_n == 'D0)begin  
		spi_clk_cnt <= 'd0;
		clk_cnt <= 'd0;
	end	
	else if(ADC_BUSY_neg == 'd1) begin
		spi_clk_cnt <= 'd36;
		clk_cnt <= adc_sample_rate_reg;20M;
	end
	else if(spi_clk_cnt > 'd0 && clk_cnt == 'd1)begin
		spi_clk_cnt <= spi_clk_cnt - 'd1;
		clk_cnt <= adc_sample_rate_reg;
	end
	else if(spi_clk_cnt > 'd0)begin
		clk_cnt <= clk_cnt - 'd1;
	end
end



always@(posedge sys_clk or negedge sys_rst_n)begin
	if(sys_rst_n == 'D0)begin  
		ADC_CS_i <= 'd1;
	end	
	else if(spi_clk_cnt > 'd0) begin
		ADC_CS_i <= 'd0;
	end
	else begin
		ADC_CS_i <= 'd1;
	end
end


always@(posedge sys_clk or negedge sys_rst_n)begin
	if(sys_rst_n == 'D0)begin  
		ADC_SCLK_i <= 'd1;
	end	
	else if(clk_cnt == 'd1 && spi_clk_cnt >='d3 && spi_clk_cnt <= 'd34) begin
		ADC_SCLK_i <= ~ADC_SCLK_i;
	end
end

always@(posedge sys_clk or negedge sys_rst_n)begin
	if(sys_rst_n == 'D0)begin  
		rec_adc_a_sample_data <= 'd0;
		rec_adc_b_sample_data <= 'd0;	
		rec_adc_c_sample_data <= 'd0;	
		rec_adc_d_sample_data <= 'd0;	
		rec_adc_e_sample_data <= 'd0;	
		rec_adc_f_sample_data <= 'd0;	
		rec_adc_g_sample_data <= 'd0;	
		rec_adc_h_sample_data <= 'd0;		
	end	
	else if(clk_cnt == 'd1 && spi_clk_cnt >='d3 && spi_clk_cnt <= 'd34 && ADC_SCLK_i == 'd0) begin
		rec_adc_a_sample_data <= {rec_adc_a_sample_data[14:0],ADC_DATA[7]};
		rec_adc_b_sample_data <= {rec_adc_b_sample_data[14:0],ADC_DATA[6]};
		rec_adc_c_sample_data <= {rec_adc_c_sample_data[14:0],ADC_DATA[5]};
		rec_adc_d_sample_data <= {rec_adc_d_sample_data[14:0],ADC_DATA[4]};	
		rec_adc_e_sample_data <= {rec_adc_e_sample_data[14:0],ADC_DATA[3]};
		rec_adc_f_sample_data <= {rec_adc_f_sample_data[14:0],ADC_DATA[2]};
		rec_adc_g_sample_data <= {rec_adc_g_sample_data[14:0],ADC_DATA[1]};
		rec_adc_h_sample_data <= {rec_adc_h_sample_data[14:0],ADC_DATA[0]};
	end
end

always@(posedge sys_clk or negedge sys_rst_n)begin
	if(sys_rst_n == 'D0)begin  
		rec_adc_sample_en <= 'd0;
		
	end	
	else if(clk_cnt == 'd1 && spi_clk_cnt == 'd3 && ADC_SCLK_i == 'd0) begin
		rec_adc_sample_en <= 'd1;
	end
	else begin
		rec_adc_sample_en <= 'd0;
	end
end

always@(posedge sys_clk or negedge sys_rst_n)begin
	if(sys_rst_n == 'D0)begin  
		sample_en_delay <= 'd0;
		adc_stop_delay <= 'd0;
	end	
	else begin
		sample_en_delay <= {sample_en_delay[30:0],rec_adc_sample_en};
		adc_stop_delay <= {adc_stop_delay[30:0],sample_en_neg};
	end
end



always@(posedge sys_clk or negedge sys_rst_n)begin
	if(sys_rst_n == 'D0)begin  
		s_axis_tdata <= 'd0;
		s_axis_tvalid <= 'd0;
	end	
	else if(sample_en_delay[0] == 'd1 && channel_a_en == 'd1)begin
		s_axis_tdata <= rec_adc_a_sample_data[15:8];
		s_axis_tvalid <= 'd1;
	end
	else if(sample_en_delay[1] == 'd1 && channel_a_en == 'd1)begin
		s_axis_tdata <= rec_adc_a_sample_data[7:0];
		s_axis_tvalid <= 'd1;
	end
	else if(sample_en_delay[2] == 'd1 && channel_b_en == 'd1)begin
		s_axis_tdata <= rec_adc_b_sample_data[15:8];
		s_axis_tvalid <= 'd1;
	end
	else if(sample_en_delay[3] == 'd1 && channel_b_en == 'd1)begin
		s_axis_tdata <= rec_adc_b_sample_data[7:0];
		s_axis_tvalid <= 'd1;
	end
	else if(sample_en_delay[4] == 'd1 && channel_c_en == 'd1)begin
		s_axis_tdata <= rec_adc_c_sample_data[15:8];
		s_axis_tvalid <= 'd1;
	end
	else if(sample_en_delay[5] == 'd1 && channel_c_en == 'd1)begin
		s_axis_tdata <= rec_adc_c_sample_data[7:0];
		s_axis_tvalid <= 'd1;
	end
	else if(sample_en_delay[6] == 'd1 && channel_d_en == 'd1)begin
		s_axis_tdata <= rec_adc_d_sample_data[15:8];
		s_axis_tvalid <= 'd1;
	end
	else if(sample_en_delay[7] == 'd1 && channel_d_en == 'd1)begin
		s_axis_tdata <= rec_adc_d_sample_data[7:0];
		s_axis_tvalid <= 'd1;
	end
	else if(sample_en_delay[8] == 'd1 && channel_e_en == 'd1)begin
		s_axis_tdata <= rec_adc_e_sample_data[15:8];
		s_axis_tvalid <= 'd1;
	end
	else if(sample_en_delay[9] == 'd1 && channel_e_en == 'd1)begin
		s_axis_tdata <= rec_adc_e_sample_data[7:0];
		s_axis_tvalid <= 'd1;
	end
	else if(sample_en_delay[10] == 'd1 && channel_f_en == 'd1)begin
		s_axis_tdata <= rec_adc_f_sample_data[15:8];
		s_axis_tvalid <= 'd1;
	end
	else if(sample_en_delay[11] == 'd1 && channel_f_en == 'd1)begin
		s_axis_tdata <= rec_adc_f_sample_data[7:0];
		s_axis_tvalid <= 'd1;
	end
	else if(sample_en_delay[12] == 'd1 && channel_g_en == 'd1)begin
		s_axis_tdata <= rec_adc_g_sample_data[15:8];
		s_axis_tvalid <= 'd1;
	end
	else if(sample_en_delay[13] == 'd1 && channel_g_en == 'd1)begin
		s_axis_tdata <= rec_adc_g_sample_data[7:0];
		s_axis_tvalid <= 'd1;
	end
	else if(sample_en_delay[14] == 'd1 && channel_h_en == 'd1)begin
		s_axis_tdata <= rec_adc_h_sample_data[15:8];
		s_axis_tvalid <= 'd1;
	end
	else if(sample_en_delay[15] == 'd1 && channel_h_en == 'd1)begin
		s_axis_tdata <= rec_adc_h_sample_data[7:0];
		s_axis_tvalid <= 'd1;
	end
	else begin
		s_axis_tvalid <= 'd0;
	end
end

always@(posedge sys_clk or negedge sys_rst_n)begin
	if(sys_rst_n == 'D0)begin  
		s_axis_tvalid_cnt <= 'd0;
	end	
	else if(s_axis_tvalid == 'd1 && s_axis_tvalid_cnt == adc_frame_length - 'd1)begin
		s_axis_tvalid_cnt <= 'd0;
	end
	else if(s_axis_tvalid == 'd1)begin
		s_axis_tvalid_cnt <= s_axis_tvalid_cnt + 'd1;
	end
end




always@(posedge sys_clk or negedge sys_rst_n)begin
	if(sys_rst_n == 'D0)begin  
		fifo_rst_en <= 'd0;
	end	
	else if(sample_en == 'd0 && axis_adc_tvalid == 'd0 && axis_data_count > 'd0 && axis_data_count <adc_frame_length)begin
		fifo_rst_en <= 'd1;
	end
	else begin
		fifo_rst_en <= 'd0;
	end
end

always@(posedge sys_clk or negedge sys_rst_n)begin
	if(sys_rst_n == 'D0)begin  
		fifo_rst_n <= 'd1;
		fifo_rst_cnt <= 'd0;
	end		
	else if(fifo_rst_en == 'd1)begin
		fifo_rst_n <= 'd0;
		fifo_rst_cnt <= 'd200;
	end
	else if(fifo_rst_cnt > 'd0)begin
		fifo_rst_n <= 'd0;
		fifo_rst_cnt <= fifo_rst_cnt - 'd1;
	end
	else begin
		fifo_rst_n <= 'd1;
		fifo_rst_cnt <= 'd0;
	end
end




SPI_DRV	SPI_DRV_inst(
	.sys_rstn(sys_rst_n),
	.sys_clk_100m(sys_clk),
	.spi_mode(2'b11),
	.spi_tvalid(spi_tvalid),
	.spi_tdata(spi_tdata),
	.spi_rate('d20),
	.spi_rd_num('d1),
	.DUT_SPI_WR_BIT_reg(8'h04),
	
	.spi_tready(),
	.dut_data_out(adc_rec_reg_data),
	.dut_data_out_en(adc_rec_reg_data_en),
	.spi_fifo_recv_en('d1),
	.spi_rd_busy(),
	
	.spi_sck(ADC_SCLK_ii),
	.spi_cs(ADC_CS_ii),
	.spi_mosi(ADC_SDI),
	.spi_miso(ADC_DATA[7])	
);
	
	
fifo_adc_sample_data	fifo_adc_sample_data_inst(
	.s_aclk(sys_clk),
	.s_aresetn(sys_rst_n && fifo_rst_n),
	.s_axis_tvalid(s_axis_tvalid),
	.s_axis_tready(),
	.s_axis_tdata(s_axis_tdata),
	.s_axis_tlast(s_axis_tlast),
	.m_axis_tvalid(axis_adc_tvalid),
	.m_axis_tready('d1),
	.m_axis_tdata(axis_adc_data),
	.m_axis_tlast(axis_adc_tlast),
	
	.axis_data_count(axis_data_count)
  );
	
	
/* test
	
reg[31:0] cnt_tx;
reg[31:0] delay;

assign rx_data_length = adc_frame_length;
	 
	
always @(posedge sys_clk or negedge sys_rst_n) begin
    if(sys_rst_n == 'd0) begin	
		axis_adc_data <= 'd0;
		axis_adc_tvalid <= 'd0;
		axis_adc_tlast <= 'd0;
		cnt_tx <= 'd0;
		delay <= 'd0;
	end

	else if(delay <= 'd2000)begin
		delay <= delay + 'd1;
	end
	
	else if(cnt_tx == adc_frame_length - 'd1)begin
		axis_adc_data <= axis_adc_data + 'd1;
		axis_adc_tvalid <= 'd1;
		axis_adc_tlast <= 'd1;
		cnt_tx <= cnt_tx + 'd1;		
	end
	else if(cnt_tx < adc_frame_length - 'd1)begin
		axis_adc_data <= axis_adc_data + 'd1;
		axis_adc_tvalid <= 'd1;
		axis_adc_tlast <= 'd0;
		cnt_tx <= cnt_tx + 'd1;		
	end

	///
	else if(cnt_tx <= 'd20000)begin
		axis_adc_data <= 'd0;
		axis_adc_tvalid <= 'd0;
		axis_adc_tlast <= 'd0;
		cnt_tx <= cnt_tx + 'd1;		
	end
	else begin
		axis_adc_data <= 'd0;
		axis_adc_tvalid <= 'd0;
		axis_adc_tlast <= 'd0;
		cnt_tx <= 'd0;
	end
end


*/	
	
endmodule






代码接口说明:

信号名说明
adc_frame_length采样数据打包成帧输出,这里设置帧内容长度
adc_tdata_reg寄存器地址+数据信息,如果是读只有读地址有效
adc_sample_rate_hADC循环采样周期高16位
adc_sample_rate_l                ADC循环采样周期低16位
adc_rec_reg_dataADC返回的寄存器值
adc_rec_reg_data_enADC返回的寄存器值使能位
adc_rw_setADC读、写、循环采样控制寄存器
adc_sample_rate_regclk速率控制
adc_sample_channel_en_reg通道使能寄存器控制,8通道可以做任意通道使能。

仿真

代码仿真结果如下:

首先是SPI写操作,放大效果如下:

该操作标识对寄存0x01写0x23值;

ADC采样波形如下:

         CONGVST为高电平期间触发芯片同步采集,此时BUSY会至高表示正在转换中,当BUSY拉低代表转换完成,输出SCLK时钟信号并开始同步采样。

如需要完整的驱动代码或者技术支持可以私聊我,谢谢。

标签:sample,en,FPGA,芯片,AD7606,adc,reg,channel,ADC
From: https://blog.csdn.net/weixin_51418325/article/details/141423993

相关文章

  • 基于FPGA的图像拼接融合算法
    基于FPGA的图像拼接融合算法一、图像拼接1.0拼接算法设计预处理(图像矫正)图像矫正通过计算图像灰度值,赋值给目标像素,将目标像素与源数据比较,然后将图像边缘的值插入到目标点;对图像消除彩色分量(对提取特征无影响),只提取亮度分量;得到的灰度图像噪声更小,细节更明显。特征点检......
  • 数字IC/FPGA中有符号数的处理探究
    做秋招笔试题时不出意外地又发现了知识盲区,特此学习记录。1.前提说明        有符号数无非分为两种:正数和负数,其中正数的符号位是0,不会引起歧义,负数的符号为1,采用的是补码表示。    此处复习一下补码的知识:对正数而言原码反码补码一致,负数则有区别,要掌握将......
  • 芯片行业内 die 的翻译及词解
    die在电子行业内使用背景"Die"的本意是指一种工具或模具,用于压制或切割材料,例如金属、塑料或玻璃。它也可以指一种用于制造产品的模具或工具。在电子行业中,"die"指的是一个集成电路的核心部分,也就是说,它是指集成电路的实际电路部分,不包括外部的连接线路和封装材料。这个术语......
  • PD type-c 取电协议芯片集成多协议 快充
    PD快充协议是一种电源传输协议,它使用type-c接口进行数据和信息的传输。快充协议允许充电器与设备之间进行智能识别和双向通信。通过这种通信,充电器能够了解设备支持的快充协议版本,最大接受电流等信息,并根据设备的需求调整输出电压与电流,从而实现快速充电。充电器通过type-c接......
  • FPGA配置高速ADC篇(1)_什么是SPI
    FPGA配置高速ADC篇(1)_什么是SPI-CSDN博客FPGA配置高速ADC篇(2)_4线SPI配置时序分析-CSDN博客FPGA配置高速ADC篇(3)_3线SPI配置时序分析-CSDN博客FPGA配置高速ADC篇(4)_基于verilog的4线SPI实现-CSDN博客FPGA配置高速ADC篇(5)_基于verilog的3线SPI实现-CSDN博客FPGA配置高......
  • FPGA配置高速ADC篇(2)_4线SPI配置时序分析
    FPGA配置高速ADC篇(1)_什么是SPI-CSDN博客FPGA配置高速ADC篇(2)_4线SPI配置时序分析-CSDN博客FPGA配置高速ADC篇(3)_3线SPI配置时序分析-CSDN博客FPGA配置高速ADC篇(4)_基于verilog的4线SPI实现-CSDN博客FPGA配置高速ADC篇(5)_基于verilog的3线SPI实现-CSDN博客FPGA配置高......
  • FPGA配置高速ADC篇(3)_3线SPI配置时序分析
    *******私信博主请加V:FPGA_GO*******上篇(第2篇)博主小飞以德州仪器(TI)的高速ADC芯片——ads52j90为例,介绍完了4线SPI配置时序。本篇(第3篇)咱们将以AnalogDevice(ADI)的多通道高速ADC芯片AD9249为例,介绍3线SPI读写配置时序。另外,大家如果想详细了解ADI公司的关于SPI配置的所有......
  • AP9195 7-24V高效率、高精度的升压型大功率 LED 照明灯与恒流驱动控制芯片方案
    概述AP9195是一款高效率、高精度的升压型大功率LED灯恒流驱动控制芯片。AP9195内置高精度误差放大器,固定关断时间控制电路,恒流驱动电路等,特别适合大功率、多个高亮度LED灯串的恒流驱动。AP9195通过调节外置的电流采样电阻,能控制高亮度LED灯的驱动电流,使LED灯亮度......
  • 【WCH蓝牙系列芯片】-基于CH582开发板—蓝牙从机HAL_SLEEP模式,串口唤醒收发数据
    -------------------------------------------------------------------------------------------------------------------------------------在之前的博客文档中介绍过CH582作为蓝牙主机,开启睡眠后,通过串口唤醒,并接收串口数据。这里再讲解一下使用CH582芯片作为蓝牙从机,开......
  • 基于STM32F407ZGT6芯片的GPIO工作模式
    目录4种输入模式4种输出模式输入模式模拟输入浮空输入上拉输入下拉输入输出模式推挽输出开漏输出复用推挽输出复用开漏输出4种输入模式(1)GPIO_Mode_IN_FLOATING浮空输入(2)GPIO_Mode_IPU上拉输入(3)GPIO_Mode_IPD下拉输入(4)GPIO_Mode_AIN模拟输入4种输出模......