10、在多分类任务实验中用torch.nn实现dropout
#导入必要的包
import torch
import torch.nn as nn
import numpy as np
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
#读取数据
mnist_train = datasets.MNIST(root = './data',train = True,download = False,transform =transforms.ToTensor())
mnist_test = datasets.MNIST(root ='./data',train = False,download = False,transform = transforms.ToTensor())
batch_size = 256
train_iter = DataLoader(
dataset = mnist_train,
shuffle = True,
batch_size = batch_size,
num_workers = 0
)
test_iter = DataLoader(
dataset = mnist_test,
shuffle =False,
batch_size = batch_size,
num_workers = 0
)
#定义模型
class LinearNet(nn.Module):
def __init__(self,num_inputs, num_outputs, num_hiddens1, num_hiddens2, drop_prob1,drop_prob2):
super(LinearNet,self).__init__()
self.linear1 = nn.Linear(num_inputs,num_hiddens1)
self.relu = nn.ReLU()
self.drop1 = nn.Dropout(drop_prob1) #nn模块封装好了Dropout层,只需要输入dropout值即可
self.linear2 = nn.Linear(num_hiddens1,num_hiddens2)
self.drop2 = nn.Dropout(drop_prob2)
self.linear3 = nn.Linear(num_hiddens2,num_outputs)
self.flatten = nn.Flatten()
def forward(self,x):
x = self.flatten(x)
x = self.linear1(x)
x = self.relu(x)
x = self.drop1(x)
x = self.linear2(x)
x = self.relu(x)
x = self.drop2(x)
x = self.linear3(x)
y = self.relu(x)
return y
#定义训练函数
def train(net,train_iter,test_iter,loss,num_epochs,batch_size,params=None,lr=None,optimizer=None):
train_ls, test_ls = [], []
for epoch in range(num_epochs):
ls, count = 0, 0
for X,y in train_iter:
l=loss(net(X),y)
optimizer.zero_grad()
l.backward()
optimizer.step()
ls += l.item()
count += y.shape[0]
train_ls.append(ls)
ls, count = 0, 0
for X,y in test_iter:
l=loss(net(X),y)
ls += l.item()
count += y.shape[0]
test_ls.append(ls)
if(epoch+1)%5==0:
print('epoch: %d, train loss: %f, test loss: %f'%(epoch+1,train_ls[-1],test_ls[-1]))
return train_ls,test_ls
#初始化参数,定义隐藏层单元个数
num_inputs,num_hiddens1,num_hiddens2,num_outputs =784, 256,256,10
num_epochs=20
lr = 0.1
#drop从0至1,训练十次,观察不同drop对训练结果的影响
drop_probs = np.arange(0,1.1,0.1)
Train_ls, Test_ls = [], []
#开始训练
for drop_prob in drop_probs:
net = LinearNet(num_inputs, num_outputs, num_hiddens1, num_hiddens2, drop_prob,drop_prob)
for param in net.parameters():
nn.init.normal_(param,mean=0, std= 0.01)
loss = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(),lr)
train_ls, test_ls = train(net,train_iter,test_iter,loss,num_epochs,batch_size,net.parameters,lr,optimizer)
Train_ls.append(train_ls)
Test_ls.append(test_ls)
#训练结果可视化
x = np.linspace(0,len(train_ls),len(train_ls))
plt.figure(figsize=(10,8))
for i in range(0,len(drop_probs)):
plt.plot(x,Train_ls[i],label= 'drop_prob=%.1f'%(drop_probs[i]),linewidth=1.5)
plt.xlabel('epoch')
plt.ylabel('loss')
plt.legend(loc=2, bbox_to_anchor=(1.05,1.0),borderaxespad = 0.)
plt.title('train loss with dropout')
plt.show()
标签:drop,num,nn,dropout,torch,train,ls,self
From: https://www.cnblogs.com/cyberbase/p/16821149.html