题目描述
这是 LeetCode 上的 886. 可能的二分法 ,难度为 中等。
Tag : 「二分图」、「染色法」、「并查集」、「DFS」
给定一组 n
人(编号为 1, 2, ..., n
), 我们想把每个人分进任意大小的两组。每个人都可能不喜欢其他人,那么他们不应该属于同一组。
给定整数 n
和数组 dislikes
,其中 ,表示不允许将编号为 和 的人归入同一组。当可以用这种方法将所有人分进两组时,返回 true
;否则返回 false
。
示例 1:
输入:n = 4, dislikes = [[1,2],[1,3],[2,4]]
输出:true
解释:group1 [1,4], group2 [2,3]
示例 2:
输入:n = 3, dislikes = [[1,2],[1,3],[2,3]]
输出:false
示例 3:
输入:n = 5, dislikes = [[1,2],[2,3],[3,4],[4,5],[1,5]]
输出:false
提示:
-
dislikes
中每一组都 不同
染色法
无论是从题目描述和对点边的描述,这都是一道「染色法判定二分图」的模板题。
为了方便,我们令 dislikes
为 ds
,将其长度记为 。
题目要求我们将 个点划分到两个集合中,同时我们将每个
使用 进行建图,并将两个将要划分出的两个集合分别记为 A
和 B
,我们可以采用「染色」的方式,尝试将所有点进行划分。
构建一个与点数相等的数组 color
,我们人为规定划分到集合 A
的点满足 ,划分到集合 B
的点满足 ,起始有 ,代表该点尚未被划分。
随后我们可以实现 DFS
函数为 boolean dfs(int u, int cur)
含义为尝试将点 u
上 cur
色。根据定义可知,我们除了需要 color[u] = cur
以外,还需要遍历点 u
的所有出边(处理其邻点,将其划分到另一集合上),若在处理过程中发生冲突,则返回 false
,若能顺利染色则返回 true
。
由于我们固定了颜色编号为 1
和 2
,因此 cur
的对立色可统一为 3 - cur
。
最终,我们根据能否给所有点染色成功来决定答案。
Java 代码:
class Solution {
int N = 2010, M = 2 * 10010;
int[] he = new int[N], e = new int[M], ne = new int[M], color = new int[N];
int idx;
void add(int a, int {
e[idx] = b;
ne[idx] = he[a];
he[a] = idx++;
}
boolean dfs(int u, int {
color[u] = cur;
for (int i = he[u]; i != -1; i = ne[i]) {
int j = e[i];
if (color[j] == cur) return false;
if (color[j] == 0 && !dfs(j, 3 - cur)) return false;
}
return true;
}
public boolean possibleBipartition(int n, int[][] ds) {
Arrays.fill(he, -1);
for (int[] info : ds) {
int a = info[0], b = info[1];
add(a, b); add(b, a);
}
for (int i = 1; i <= n; i++) {
if (color[i] != 0) continue;
if (!dfs(i, 1)) return false;
}
return true;
}
}
TypeScript 代码:
const N = 2010, M = 2 * 10010
const he = new Array<number>(N), e = new Array<number>(M).fill(0), ne = new Array<number>(M).fill(0), color = new Array<number>(N)
let idx = 0
function add(a: number, b: number): void {
e[idx] = b
ne[idx] = he[a]
he[a] = idx++
}
function dfs(u: number, cur: number): boolean {
color[u] = cur
for (let i = he[u]; i != -1; i = ne[i]) {
const j = e[i];
if (color[j] == cur) return false
if (color[j] == 0 && !dfs(j, 3 - cur)) return false
}
return true
}
function possibleBipartition(n: number, ds: number[][]): boolean {
he.fill(-1)
idx = 0
for (const info of ds) {
const a = info[0], b = info[1]
add(a, b); add(b, a)
}
color.fill(0)
for (let i = 1; i <= n; i++) {
if (color[i] != 0) continue
if (!dfs(i, 1)) return false
}
return true
Python 代码:
class Solution:
def possibleBipartition(self, n: int, ds: List[List[int]]) -> bool:
N, M = 2010, 20010
he, e, ne, color = [-1] * N, [0] * M, [0] * M, [0] * N
idx = 0
def add(a, b):
nonlocal idx
e[idx], ne[idx], he[a] = b, he[a], idx
idx += 1
def dfs(u, cur):
color[u] = cur
i = he[u]
while i != -1:
j = e[i]
if color[j] == cur:
return False
if color[j] == 0 and not dfs(j, 3 - cur):
return False
i = ne[i]
return True
for info in ds:
a, b = info[0], info[1]
add(a, b)
add(b, a)
for i in range(1, n + 1):
if color[i] != 0:
continue
if not dfs(i, 1):
return False
return True
- 时间复杂度:
- 空间复杂度:
反向点 + 并查集
我们知道对于 而言,点 a
和点 b
必然位于不同的集合中,同时由于只有两个候选集合,因此这样的关系具有推断性:即对于 和 可知 a
和 c
位于同一集合。
因此,我们可以对于每个点 x
而言,建议一个反向点 x + n
:若点 x
位于集合 A
则其反向点 x + n
位于集合 B
,反之同理。
基于此,我们可以使用「并查集」维护所有点的连通性:边维护变检查每个 的联通关系,若 联通,必然是其反向点联通所导致,必然是此前的其他 导致的关系冲突,必然不能顺利划分成两个集合,返回 false
,否则返回 true
。
Java 代码:
class Solution {
int[] p = new int[4010];
int find(int {
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
void union(int a, int {
p[find(a)] = p[find(b)];
}
boolean query(int a, int {
return find(a) == find(b);
}
public boolean possibleBipartition(int n, int[][] ds) {
for (int i = 1; i <= 2 * n; i++) p[i] = i;
for (int[] info : ds) {
int a = info[0], b = info[1];
if (query(a, b)) return false;
union(a, b + n); union(b, a + n);
}
return true;
}
}
TypeScript 代码:
const p = new Array<number>(4010).fill(0)
function find(x: number): number {
if (p[x] != x) p[x] = find(p[x])
return p[x]
}
function union(a: number, b: number): void {
p[find(a)] = p[find(b)]
}
function query(a: number, b: number): boolean {
return find(a) == find(b)
}
function possibleBipartition(n: number, ds: number[][]): boolean {
for (let i = 1; i <= 2 * n; i++) p[i] = i
for (const info of ds) {
const a = info[0], b = info[1]
if (query(a, b)) return false
union(a, b + n); union(b, a + n)
}
return true
Python 代码:
class Solution:
def possibleBipartition(self, n: int, ds: List[List[int]]) -> bool:
p = [i for i in range(0, 2 * n + 10)]
def find(x):
if p[x] != x:
p[x] = find(p[x])
return p[x]
def union(a, b):
p[find(a)] = p[find(b)]
def query(a, b):
return find(a) == find(b)
for info in ds:
a, b = info[0], info[1]
if query(a, b):
return False
else:
union(a, b + n)
union(b, a + n)
return True
- 时间复杂度:
- 空间复杂度:
最后
这是我们「刷穿 LeetCode」系列文章的第 No.886
篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先把所有不带锁的题目刷完。
在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。
为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:github.com/SharingSour… 。
在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。