首页 > 其他分享 >HBase学习的第五天--HBase进阶结尾和phoenix开头

HBase学习的第五天--HBase进阶结尾和phoenix开头

时间:2024-08-17 11:40:02浏览次数:7  
标签:phoenix 阈值 -- region regionserver hbase 数据 HBase

HBase进阶下

一、HBase的读写流程

1.1 HBase读流程

Hbase读取数据的流程:
1)是由客户端发起读取数据的请求,首先会与zookeeper建立连接
2)从zookeeper中获取一个hbase:meta表位置信息,被哪一个regionserver所管理着
     hbase:meta表:hbase的元数据表,在这个表中存储了自定义表相关的元数据,包括表名,表有哪些列簇,表有哪些region,每个region存储的位置,每个region被哪个regionserver所管理,这个表也是存储在某一个region上的,并且这个meta表只会被一个regionserver所管理。这个表的位置信息只有zookeeper知道。
3)连接这个meta表对应的regionserver,从meta表中获取当前你要读取的这个表对应的regionsever是谁。
     当一个表多个region怎么办呢?
     如果我们获取数据是以get的方式,只会返回一个regionserver
     如果我们获取数据是以scan的方式,会将所有的region对应的regionserver的地址全部返回。
4)连接要读取表的对应的regionserver,从regionserver上的开始读取数据:
       读取顺序:memstore-->blockcache-->storefile-->Hfile中
       			storefile和Hfile对应的是一个文件
       注意:如果是scan操作,就不仅仅去blockcache了,而是所有都会去找。

1.2 HBase写流程

--------------------------1-4步是客户端写入数据的流程-----------------

Hbase的写入数据流程:
1)由客户端发起写数据请求,首先会与zookeeper建立连接
2)从zookeeper中获取hbase:meta表被哪一个regionserver所管理
3)连接hbase:meta表中获取对应的regionserver地址 (从meta表中获取当前要写入数据的表对应的region所管理的regionserver) 只会返回一个regionserver地址
4)与要写入数据的regionserver建立连接,然后开始写入数据,将数据首先会写入到HLog,然后将数据写入到对应store模块中的memstore中
(可能会写多个),当这两个地方都写入完成之后,表示数据写入完成。


-------------------------后面的步骤是服务器内部的操作-----------------
异步操作
5)随着客户端不断地写入数据,memstore中的数据会越来多,当内存中的数据达到阈值(128M/1h)的时候,放入到blockchache中,生成新的memstore接收用户过来的数据,然后当blockcache的大小达到一定阈值(0.85)的时候,开始触发flush机制,将数据最终刷新到HDFS中形成小的Hfile文件。

6)随着不断地刷新,storefile不断地在HDFS上生成小HFIle文件,当小的HFile文件达到阈值的时候(3个及3个以上),就会触发Compaction机制,将小的HFile合并成一个大的HFile.

7)随着不断地合并,大的HFile文件会越来越大,当达到一定阈值(2.0版本之后最终10G)的时候,会触发分裂机制(split),将大的HFile文件进行一分为二,同时管理这个大的HFile的region也会被一分为二,形成两个新的region和两个新的HFile文件,一对一的进行管理,将原来旧的region和分裂之前大的HFile文件慢慢地就会下线处理。

HBase写流程的简单概况

  • 开始用户先往HLOG(主要起到恢复数据的作用,如果数据已经落地到磁盘上,WAL中的数据就会被删除)中写日志

  • memstore相当于内存,当其达到128M(阈值)或者一个小时,会将数据放到队列中,这个队列所在的容器叫做blockcache

  • 在blockcache达到85%或者一个小时的时候,达到阈值,开始往外溢写,该溢写文件在hbase中叫做storefile,但是在HDFS中叫做Hfile

  • 在HDFS中随着溢写文件越来越多会生成大的Hfile文件,条件是三个或者三个以上的小文件合并成一个大文件

  • 当这个大文件达到128M时,又开始进行分裂成小文件,接着小文件数量增多,又会合并成新的大文件,此时这个大文件的阈值则是10G

二、Region的分裂策略

region中存储的是一张表的数据,当region中的数据条数过多的时候,会直接影响查询效率。当region过大的时候,region会被拆分为两个region,HMaster会将分裂的region分配到不同的regionserver上,这样可以让请求分散到不同的RegionServer上,已达到负载均衡 , 这也是HBase的一个优点 。

  • ConstantSizeRegionSplitPolicy

    0.94版本前,HBase region的默认切分策略

    当region中最大的store大小超过某个阈值(hbase.hregion.max.filesize=10G)之后就会触发切分,一个region等分为2个region。

    但是在生产线上这种切分策略却有相当大的弊端(切分策略对于大表和小表没有明显的区分):

    • 阈值(hbase.hregion.max.filesize)设置较大对大表比较友好,但是小表就有可能不会触发分裂,极端情况下可能就1个,形成热点,这对业务来说并不是什么好事。
    • 如果设置较小则对小表友好,但一个大表就会在整个集群产生大量的region,这对于集群的管理、资源使用、failover来说都不是一件好事。
  • IncreasingToUpperBoundRegionSplitPolicy

    0.94版本~2.0版本默认切分策略

    ​ 总体看和ConstantSizeRegionSplitPolicy思路相同,一个region中最大的store大小大于设置阈值就会触发切分。
    但是这个阈值并不像ConstantSizeRegionSplitPolicy是一个固定的值,而是会在一定条件下不断调整,调整规则和region所属表在当前regionserver上的region个数有关系.

    region split阈值的计算公式是:

    • 设regioncount:是region所属表在当前regionserver上的region的个数

    • 阈值 = regioncount^3 * 128M * 2,当然阈值并不会无限增长,最大不超过MaxRegionFileSize(10G),当region中最大的store的大小达到该阈值的时候进行region split

    例如:

    • 第一次split阈值 = 1^3 * 256 = 256MB
    • 第二次split阈值 = 2^3 * 256 = 2048MB
    • 第三次split阈值 = 3^3 * 256 = 6912MB
    • 第四次split阈值 = 4^3 * 256 = 16384MB > 10GB,因此取较小的值10GB
    • 后面每次split的size都是10GB了

    特点

    • 相比ConstantSizeRegionSplitPolicy,可以自适应大表、小表;
    • 在集群规模比较大的情况下,对大表的表现比较优秀
    • 对小表不友好,小表可能产生大量的小region,分散在各regionserver上
    • 小表达不到多次切分条件,导致每个split都很小,所以分散在各个regionServer上
  • SteppingSplitPolicy

    2.0版本默认切分策略

    ​ 相比 IncreasingToUpperBoundRegionSplitPolicy 简单了一些
    ​ region切分的阈值依然和待分裂region所属表在当前regionserver上的region个数有关系

    • 如果region个数等于1,切分阈值为flush size 128M
    • 否则为MaxRegionFileSize。

    这种切分策略对于大集群中的大表、小表会比 IncreasingToUpperBoundRegionSplitPolicy 更加友好,小表不会再产生大量的小region,而是适可而止。

  • KeyPrefixRegionSplitPolicy

    根据rowKey的前缀对数据进行分区,这里是指定rowKey的前多少位作为前缀,比如rowKey都是16位的,指定前5位是前缀,那么前5位相同的rowKey在相同的region中。

  • DelimitedKeyPrefixRegionSplitPolicy

    保证相同前缀的数据在同一个region中,例如rowKey的格式为:userid_eventtype_eventid,指定的delimiter为 _ ,则split的的时候会确保userid相同的数据在同一个region中。
    按照分隔符进行切分,而KeyPrefixRegionSplitPolicy是按照指定位数切分。

  • BusyRegionSplitPolicy

    按照一定的策略判断Region是不是Busy状态,如果是即进行切分

    如果你的系统常常会出现热点Region,而你对性能有很高的追求,那么这种策略可能会比较适合你。它会通过拆分热点Region来缓解热点Region的压力,但是根据热点来拆分Region也会带来很多不确定性因素,因为你也不知道下一个被拆分的Region是哪个。

  • DisabledRegionSplitPolicy

    不启用自动拆分, 需要指定手动拆分

三、Compaction操作

注意:在合并的过程中,客户端是不会进行任何操作的,即用户是无法对HBase进行增删改操作的

Minor Compaction:

  • 指选取一些小的、相邻的StoreFile将他们合并成一个更大的StoreFile,在这个过程中不会处理已经Deleted或Expired的Cell。一次 Minor Compaction 的结果是更少并且更大的StoreFile。

Major Compaction:

  • 指将所有的StoreFile合并成一个StoreFile,这个过程会清理三类没有意义的数据:被删除的数据TTL过期数据版本号超过设定版本号的数据。另外,一般情况下,major compaction时间会持续比较长,整个过程会消耗大量系统资源,对上层业务有比较大的影响。因此线上业务都会将关闭自动触发major compaction功能,改为手动在业务低峰期触发。

参考文档:https://cloud.tencent.com/developer/article/1488439

同时,HBase是一个面向列存储的数据库(列簇机制),当表字段非常多时,可以把其中一些字段独立出来放在一部分机器上,而另外一些字段放到另一部分机器上,分散存储,分散列查询。

正由于这样复杂的存储结构和分布式的存储方式,保证了HBase海量数据下的查询效率。

五、HBase与Hive的集成

HBase与Hive的对比

HBase和Hive的数据最终都存储在HDFS上,只不过是存储形式不太一样。

  • Hbase和Hive集成就要求两者是同一个集群

hive:

数据仓库建模工具之一:Hive的本质其实就相当于将HDFS中已经存储的文件在Mysql中做了一个双射关系,以方便使用HQL去管理查询。

用于数据分析、清洗:Hive适用于离线的数据分析和清洗,延迟较高。

基于HDFS、MapReduce:Hive存储的数据依旧在DataNode上,编写的HQL语句终将是转换为MapReduce代码执行。

HBase

  • HBase是一种nosql数据库,它是基于Hadoop分布式文件系统HDFS构建的分布式数据库。
  • HBase是一种列式数据库,它以列簇作为存储单位存储数据。

数据库:是一种面向列族存储的非关系型数据库。

用于存储结构化和非结构化的数据:适用于单表非关系型数据的存储,不适合做关联查询,类似JOIN等操作。

基于HDFS:数据持久化存储的体现形式是HFile,存放于DataNode中,被ResionServer以region的形式进行管理。

延迟较低,接入在线业务使用:面对大量的企业数据,HBase可以直线单表大量数据的存储,同时提供了高效的数据访问速度。

hive-site.xml中添加zookeeper的属性

	<property>
        <name>hive.zookeeper.quorum</name>
        <value>master,node1,node2</value>
    </property>

    <property>
        <name>hive.zookeeper.client.port</name>
        <value>2181</value>
    </property>

HBase中已经存储了某一张表,在Hive中创建一个外部表来关联HBase中的这张表

建立外部表的字段名要和hbase中的列名一致

前提是hbase中已经有表了

create external table students_hbase
(
id string,
name string,
age string,
gender string, 
clazz string
)
stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
with serdeproperties ("hbase.columns.mapping" = "
:key,
info:name,
info:age,
info:gender,
info:clazz
")
tblproperties("hbase.table.name" = "default:students");

create external table score_hbase2
(
id string,
score_dan string
)
stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
with serdeproperties ("hbase.columns.mapping" = "
:key,
info:subject_score
")
tblproperties("hbase.table.name" = "default:scores");

关联后就可以使用Hive函数进行一些分析操作了

六、Phoenix

Hbase适合存储大量的对关系运算要求低的NOSQL数据,受Hbase 设计上的限制不能直接使用原生的API执行在关系数据库中普遍使用的条件判断和聚合等操作。Hbase很优秀,一些团队寻求在Hbase之上提供一种更面向普通开发人员的操作方式,Apache Phoenix即是。

Phoenix 基于Hbase给面向业务的开发人员提供了以标准SQL的方式对Hbase进行查询操作,并支持标准SQL中大部分特性:条件运算,分组,分页,等高级查询语法。

1、Phoenix搭建

Phoenix 5.1.0 HBase 2.2.7 hadoop 3.1.1

1、关闭hbase集群,在master中执行

stop-hbase.sh

2、上传解压配置环境变量

解压

tar -xvf apache-phoenix-4.15.0-HBase-1.4-bin.tar.gz -C /usr/local/soft/

改名

mv apache-phoenix-4.15.0-HBase-1.4-bin phoenix-4.15.0

3、将phoenix-4.15.0-HBase-1.4-server.jar复制到所有节点的hbase lib目录下

scp /usr/local/soft/phoenix-4.15.0/phoenix-4.15.0-HBase-1.4-server.jar master:/usr/local/soft/hbase-1.4.6/lib/

scp /usr/local/soft/phoenix-4.15.0/phoenix-4.15.0-HBase-1.4-server.jar node1:/usr/local/soft/hbase-1.4.6/lib/

scp /usr/local/soft/phoenix-4.15.0/phoenix-4.15.0-HBase-1.4-server.jar node2:/usr/local/soft/hbase-1.4.6/lib/

4、启动hbase , 在master中执行

start-hbase.sh

5、配置环境变量

vim /etc/profile

2、Phoenix使用

1、连接sqlline

sqlline.py master,node1,node2

# 出现
163/163 (100%) Done
Done
sqlline version 1.5.0
0: jdbc:phoenix:master,node1,node2> 


2、常用命令

phoneix使用语法注意事项

# 使用注意事项
	1、在phoneix内部创建表的时候,表名最后可以使用!table或者show tables命令查看,并且以大写的形式展示给我们,但是我们在使用sql语句查询的时候既可以用大写也可以用小写。(列名和表名大小写无所谓)
	
	2、直接在phoneix内部创建的表,在hbase中可以以大写的方式查看到,但是在hbase中建的表,在phoneix中看不到。
	
	3、如何在phoneix中使用hbase原本的数据表呢?
		视图映射:视图并不是真正意义上的表,而是在phoneix创建一个映射关系,以表的形式将hbase中原本数据映射过来,可以在基础之上编写sql语句进行分析,需要注意的是,我们在视图上sql分析的时候,表名和列名需要加双引号。删除视图不会影响原本hbase中的数据,视图无法做修改,只能查询,视图在phoneix中被看作成一个只读表。
		表映射:建表的语法来说与视图映射相差一个单词,其他的没啥区别。使用上,表映射可以直接在phoneix中对表数据进行增删改查。将phoneix中表映射删了,原来hbase中的表也对应删除。
		
	4、映射查询的时候,主键可以不用加双引号,非主键的列必须加双引号

在HBase中创建一张表,在phoenix中是看不到的

但是在phoenix中创建的表可以在HBase中看到

  • 注意:
    • 在phoenix对表进行操作,尽管表名是大写的,在实现对表的操作时,表名也可以小写
    • 但是在hbase中如果表名时大写,操作表时表名就必须大写
# 1、创建表

CREATE TABLE IF NOT EXISTS students_p1 (
 id VARCHAR NOT NULL PRIMARY KEY, 
 name VARCHAR,
 age BIGINT, 
 gender VARCHAR ,
 clazz VARCHAR
);

# 2、显示所有表
 !table

# 3、插入数据
upsert into students_p1 values('1500101004','小虎',22,'男','理科一班');
upsert into students_p1 values('1500100005','宣谷芹',24,'男','理科六班');
upsert into students_p1 values('1500100006','羿彦昌',24,'女','理科三班');
upsert into students_p1 values('1500100007','zhangsan',24,'女','理科一班');


# 4、查询数据,支持大部分sql语法,
select * from STUDENT ;
select * from STUDENT where age=24;
select gender ,count(*) from STUDENT group by gender;
select * from student order by gender;

# 5、删除数据
delete from STUDENT where id='1500100004';


# 6、删除表
drop table STUDENT;
 
 
# 7、退出命令行
!quit

更多语法参照官网
https://phoenix.apache.org/language/index.html#upsert_select

标签:phoenix,阈值,--,region,regionserver,hbase,数据,HBase
From: https://www.cnblogs.com/shmil/p/18364155

相关文章

  • 隔水盅炖汤
    炖汤五指毛桃炖鸡:五指毛桃,无花果,红枣,枸杞,鸡肉,水,桂圆,姜。 https://www.bilibili.com/video/BV1AF41187Yz/?spm_id_from=333.1007.top_right_bar_window_history.content.click&vd_source=0467b2aa1e0f8991e5b75f0e8b85862c  ......
  • numpy梯度回传\线性回归
    1importmath2importnumpyasnp3x_train=np.array([1.0,2.0,3.0])4y_train=np.array([300.0,350.0,500])56defcompute_cost(x,y,w,b):7m=x.shape[0]8f_wb=w*x+b9cost=((f_wb-y)**2).sum()10total_co......
  • Winform C#多显示器窗口控制详解
    写Winform程序的时候,有将一个窗口放置到特定的显示器,并且全屏的需求。于是借此机会,好好研究了一番这个Screen类[1],总结了一些方法。Windows的窗口逻辑首先我们需要知道窗口定位的逻辑。以2个窗口为例,下面的图片展示了显示器和坐标的对应关系。注意,使用深色模式可能看不清,可以点......
  • Web3开发中的时间锁与多签名机制:确保安全性与控制
    在Web3开发中,确保交易的安全性和数据的一致性是至关重要的。为了应对这些挑战,开发者常常利用链上的多签名(Multi-Signature)和时间锁(TimeLock)机制。这两种机制不仅提升了系统的安全性,还增加了操作的透明度和控制性。本文将详细介绍这两种机制的基本概念、应用场景以及如何在智能合......
  • 容斥原理
    二项式系数  二项式定理证明过程 (x+y)^n=(x+y)(x+y)(x+y)........(x+y)我们先展开式子,得出以上等式。为了方便,我们以n=3举例(x+y)^3=(x+y)(x+y)(x+y)对于每一个因式(即每一个(x+y)),都可以选择x或者y和其他的因式(即其他的(x+y))也选出x或者y相乘,然......
  • CF704E Iron Man 题解
    Description“铁人”yyb在玩游戏。在一个\(n\)个点的树上,yyb放置了\(m\)个鸡贼。每个鸡贼有四个整数参数\(t_i,c_i,v_i,u_i\),表示这个鸡贼会在\(t_i\)时刻出现在点\(v_i\),并以每时刻\(c_i\)条边的速度向\(u_i\)点匀速移动,到达\(u_i\)点时立刻消失。如果一个时刻......
  • 在线三维CAD中如何实现二维CAD图转三维
    一、前言网页CAD中经常有这样的需求:将二维的CAD图纸通过转换为三维的形状(如将平面二维的图形向上拉伸一定的高度),进而进行三维展示的效果,本文以将平面二维的图形向上拉伸一定的高度为例,实现二维CAD图形转三维图形。二、mxcad和mxcad3dmxcad是一个功能丰富、简易高效的二维CAD开......
  • 介绍一下咱们以后的博客学习内容(看看有没有你想学的东西吧!)
    本章概述C语言数据结构算法C++语言Linux系统操作Linux网络编程MySQL数据库额外内容(看后面自己有没有时间更新)C语言C语言是咱们后续内容的基石,所以C语言作为咱们的开篇。介绍一下学习内容:数据类型和流程控制语句,函数基本使用,数组基础,操作符详解,指针基础,结构体基本......
  • 【嵌入式开发之网络编程】互联网的基本概念
    计算机网络的定义计算机网络的精确定义并未统一:以功能完善的网络软件及通信协议实现资源共享和信息传递的系统。以传输信息为基本目的,用通信线路和通信设备将多个计算机连接起来的计算机系统的集合。计算机网络的分类 按照网络的作用范围进行分类类别作用范围或距离广域......
  • 恒源云GPUshare常用指令
    1、本地上传至个人数据下的自定义文件夹(例yolov8)中本地Windows+R输入cmdosslogin输入账号密码登录cpD:\ultralytics-main.ziposs://yolov8/ (注意更换自己文件夹路径)2、从个人数据下载到hy-tmp文件夹中服务器终端osslogin输入账号密码登录osscposs://yolov8/ul......