纯小白,自学!从零入门AI生图(AIGC方向)基于魔搭社区“可图Kolors-LoRA风格故事挑战赛”开展实践学习。#Datawhale X 魔搭 AI夏令营#
一、利用AI精读baseline学习代码
task2的目的是精读baseline,从代码层面理解AI生图,直播演示了用通义千问解析代码,我也用GPT-4o,文心一言解析代码,看看区别。
这个是文生图代码的框架结构:
baseline中的所有代码:
!pip install simple-aesthetics-predictor
!pip install -v -e data-juicer
!pip uninstall pytorch-lightning -y
!pip install peft lightning pandas torchvision
!pip install -e DiffSynth-Studio
from modelscope.msdatasets import MsDataset
ds = MsDataset.load(
'AI-ModelScope/lowres_anime',
subset_name='default',
split='train',
cache_dir="/mnt/workspace/kolors/data"
)
import json, os
from data_juicer.utils.mm_utils import SpecialTokens
from tqdm import tqdm
os.makedirs("./data/lora_dataset/train", exist_ok=True)
os.makedirs("./data/data-juicer/input", exist_ok=True)
with open("./data/data-juicer/input/metadata.jsonl", "w") as f:
for data_id, data in enumerate(tqdm(ds)):
image = data["image"].convert("RGB")
image.save(f"/mnt/workspace/kolors/data/lora_dataset/train/{data_id}.jpg")
metadata = {"text": "二次元", "image": [f"/mnt/workspace/kolors/data/lora_dataset/train/{data_id}.jpg"]}
f.write(json.dumps(metadata))
f.write("\n")
data_juicer_config = """
# global parameters
project_name: 'data-process'
dataset_path: './data/data-juicer/input/metadata.jsonl' # path to your dataset directory or file
np: 4 # number of subprocess to process your dataset
text_keys: 'text'
image_key: 'image'
image_special_token: '<__dj__image>'
export_path: './data/data-juicer/output/result.jsonl'
# process schedule
# a list of several process operators with their arguments
process:
- image_shape_filter:
min_width: 1024
min_height: 1024
any_or_all: any
- image_aspect_ratio_filter:
min_ratio: 0.5
max_ratio: 2.0
any_or_all: any
"""
with open("data/data-juicer/data_juicer_config.yaml", "w") as file:
file.write(data_juicer_config.strip())
!dj-process --config data/data-juicer/data_juicer_config.yaml
import pandas as pd
import os, json
from PIL import Image
from tqdm import tqdm
texts, file_names = [], []
os.makedirs("./data/data-juicer/output/images", exist_ok=True)
with open("./data/data-juicer/output/result.jsonl", "r") as f:
for line in tqdm(f):
metadata = json.loads(line)
texts.append(metadata["text"])
file_names.append(metadata["image"][0])
df = pd.DataFrame({"text": texts, "file_name": file_names})
df.to_csv("./data/data-juicer/output/result.csv", index=False)
df
from transformers import CLIPProcessor, CLIPModel
import torch
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
images = [Image.open(img_path) for img_path in df["file_name"]]
inputs = processor(text=df["text"].tolist(), images=images, return_tensors="pt", padding=True)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the probabilities
probs
from torch.utils.data import Dataset, DataLoader
class CustomDataset(Dataset):
def __init__(self, df, processor):
self.texts = df["text"].tolist()
self.images = [Image.open(img_path) for img_path in df["file_name"]]
self.processor = processor
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
inputs = self.processor(text=self.texts[idx], images=self.images[idx], return_tensors="pt", padding=True)
return inputs
dataset = CustomDataset(df, processor)
dataloader = DataLoader(dataset, batch_size=8)
for batch in dataloader:
outputs = model(**batch)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=1)
print(probs)
import torch
from diffusers import StableDiffusionPipeline
torch.manual_seed(1)
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v-1-4", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "二次元,一个紫色长发小女孩穿着粉色吊带漏肩连衣裙,在练习室练习唱歌,手持话筒"
negative_prompt = "丑陋、变形、嘈杂、模糊、低对比度"
guidance_scale = 4
num_inference_steps = 50
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
height=1024,
width=1024,
).images[0]
image.save("example_image.png")
image
from PIL import Image
torch.manual_seed(1)
image = pipe(
prompt="二次元,日系动漫,演唱会的观众席,人山人海,一个紫色短发小女孩穿着粉色吊带漏肩连衣裙坐在演唱会的观众席,舞台上衣着华丽的歌星们在唱歌",
negative_prompt="丑陋、变形、嘈杂、模糊、低对比度",
cfg_scale=4,
num_inference_steps=50, height=1024, width=1024,
)
image.save("1.jpg")
torch.manual_seed(1)
image = pipe(
prompt="二次元,一个紫色短发小女孩穿着粉色吊带漏肩连衣裙坐在演唱会的观众席,露出憧憬的神情",
negative_prompt="丑陋、变形、嘈杂、模糊、低对比度,色情擦边",
cfg_scale=4,
num_inference_steps=50, height=1024, width=1024,
)
image.save("2.jpg")
torch.manual_seed(2)
image = pipe(
prompt="二次元,一个紫色短发小女孩穿着粉色吊带漏肩连衣裙坐在演唱会的观众席,露出憧憬的神情",
negative_prompt="丑陋、变形、嘈杂、模糊、低对比度,色情擦边",
cfg_scale=4,
num_inference_steps=50, height=1024, width=1024,
)
image.save("3.jpg")
torch.manual_seed(5)
image = pipe(
prompt="二次元,一个紫色短发小女孩穿着粉色吊带漏肩连衣裙,对着流星许愿,闭着眼睛,十指交叉,侧面",
negative_prompt="丑陋、变形、嘈杂、模糊、低对比度,扭曲的手指,多余的手指",
cfg_scale=4,
num_inference_steps=50, height=1024, width=1024,
)
image.save("4.jpg")
torch.manual_seed(0)
image = pipe(
prompt="二次元,一个紫色中等长度头发小女孩穿着粉色吊带漏肩连衣裙,在练习室练习唱歌",
negative_prompt="丑陋、变形、嘈杂、模糊、低对比度",
cfg_scale=4,
num_inference_steps=50, height=1024, width=1024,
)
image.save("5.jpg")
torch.manual_seed(1)
image = pipe(
prompt="二次元,一个紫色长发小女孩穿着粉色吊带漏肩连衣裙,在练习室练习唱歌,手持话筒",
negative_prompt="丑陋、变形、嘈杂、模糊、低对比度",
cfg_scale=4,
num_inference_steps=50, height=1024, width=1024,
)
image.save("6.jpg")
torch.manual_seed(7)
image = pipe(
prompt="二次元,紫色长发少女,穿着黑色连衣裙,试衣间,心情忐忑",
negative_prompt="丑陋、变形、嘈杂、模糊、低对比度",
cfg_scale=4,
num_inference_steps=50, height=1024, width=1024,
)
image.save("7.jpg")
torch.manual_seed(0)
image = pipe(
prompt="二次元,紫色长发少女,穿着黑色礼服,连衣裙,在台上唱歌",
negative_prompt="丑陋、变形、嘈杂、模糊、低对比度",
cfg_scale=4,
num_inference_steps=50, height=1024, width=1024,
)
image.save("8.jpg")
import numpy as np
from PIL import Image
images = [np.array(Image.open(f"{i}.jpg")) for i in range(1, 9)]
image = np.concatenate([
np.concatenate(images[0:2], axis=1),
np.concatenate(images[2:4], axis=1),
np.concatenate(images[4:6], axis=1),
np.concatenate(images[6:8], axis=1),
], axis=0)
image = Image.fromarray(image).resize((1024, 2048))
image
-
分析代码的主体架构
-
GPT、文心一言输入的Prompt
-
你是一个优秀的python开发工程师,现在我们需要你帮我们分析这个代码的主体框架,你需要把代码按照工作流分成几部分,用中文回答我的问题。{此处替换前面的代码}
GPT的分析:
这个代码可以分为几个主要的工作流程部分,每个部分的作用如下:
### 1. **环境准备和依赖安装**
- 安装所需的Python库和依赖。
!pip install simple-aesthetics-predictor
!pip install -v -e data-juicer
!pip uninstall pytorch-lightning -y
!pip install peft lightning pandas torchvision
!pip install -e DiffSynth-Studio
### 2. **数据集加载与处理**
- 加载低分辨率的动漫数据集并进行处理,生成用于训练的数据。
from modelscope.msdatasets import MsDataset
ds = MsDataset.load(
'AI-ModelScope/lowres_anime',
subset_name='default',
split='train',
cache_dir="/mnt/workspace/kolors/data"
)
import json, os
from data_juicer.utils.mm_utils import SpecialTokens
from tqdm import tqdm
os.makedirs("./data/lora_dataset/train", exist_ok=True)
os.makedirs("./data/data-juicer/input", exist_ok=True)
with open("./data/data-juicer/input/metadata.jsonl", "w") as f:
for data_id, data in enumerate(tqdm(ds)):
image = data["image"].convert("RGB")
image.save(f"/mnt/workspace/kolors/data/lora_dataset/train/{data_id}.jpg")
metadata = {"text": "二次元", "image": [f"/mnt/workspace/kolors/data/lora_dataset/train/{data_id}.jpg"]}
f.write(json.dumps(metadata))
f.write("\n")
### 3. **数据过滤与配置**
- 配置数据过滤器,对生成的图像数据进行尺寸和比例过滤。
data_juicer_config = """
# global parameters
project_name: 'data-process'
dataset_path: './data/data-juicer/input/metadata.jsonl'
np: 4
text_keys: 'text'
image_key: 'image'
image_special_token: '<__dj__image>'
export_path: './data/data-juicer/output/result.jsonl'
# process schedule
process:
- image_shape_filter:
min_width: 1024
min_height: 1024
any_or_all: any
- image_aspect_ratio_filter:
min_ratio: 0.5
max_ratio: 2.0
any_or_all: any
"""
with open("data/data-juicer/data_juicer_config.yaml", "w") as file:
file.write(data_juicer_config.strip())
!dj-process --config data/data-juicer/data_juicer_config.yaml
### 4. **结果处理与导出**
- 处理过滤后的数据,并将结果保存为CSV文件。
import pandas as pd
import os, json
from PIL import Image
from tqdm import tqdm
texts, file_names = [], []
os.makedirs("./data/data-juicer/output/images", exist_ok=True)
with open("./data/data-juicer/output/result.jsonl", "r") as f:
for line in tqdm(f):
metadata = json.loads(line)
texts.append(metadata["text"])
file_names.append(metadata["image"][0])
df = pd.DataFrame({"text": texts, "file_name": file_names})
df.to_csv("./data/data-juicer/output/result.csv", index=False)
df
### 5. **CLIP模型推理**
- 使用CLIP模型进行图像和文本的相似度计算。
from transformers import CLIPProcessor, CLIPModel
import torch
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
images = [Image.open(img_path) for img_path in df["file_name"]]
inputs = processor(text=df["text"].tolist(), images=images, return_tensors="pt", padding=True)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=1)
probs
### 6. **自定义数据集与批量处理**
- 定义自定义数据集类,并使用DataLoader进行批量数据处理。
from torch.utils.data import Dataset, DataLoader
class CustomDataset(Dataset):
def __init__(self, df, processor):
self.texts = df["text"].tolist()
self.images = [Image.open(img_path) for img_path in df["file_name"]]
self.processor = processor
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
inputs = self.processor(text=self.texts[idx], images=self.images[idx], return_tensors="pt", padding=True)
return inputs
dataset = CustomDataset(df, processor)
dataloader = DataLoader(dataset, batch_size=8)
for batch in dataloader:
outputs = model(**batch)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=1)
print(probs)
### 7. **Stable Diffusion生成图像**
- 使用Stable Diffusion生成高分辨率的二次元图像。
import torch
from diffusers import StableDiffusionPipeline
torch.manual_seed(1)
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v-1-4", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "二次元,一个紫色长发小女孩穿着粉色吊带漏肩连衣裙,在练习室练习唱歌,手持话筒"
negative_prompt = "丑陋、变形、嘈杂、模糊、低对比度"
guidance_scale = 4
num_inference_steps = 50
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
height=1024,
width=1024,
).images[0]
image.save("example_image.png")
image
### 8. **拼接图像**
- 将生成的多张图像拼接成一张大图。
import numpy as np
from PIL import Image
images = [np.array(Image.open(f"{i}.jpg")) for i in range(1, 9)]
image = np.concatenate([
np.concatenate(images[0:2], axis=1),
np.concatenate(images[2:4], axis=1),
np.concatenate(images[4:6], axis=1),
np.concatenate(images[6:8], axis=1),
], axis=0)
image = Image.fromarray(image).resize((1024, 2048))
image
### 总结:
这个代码的流程主要分为环境准备、数据集处理、模型推理、图像生成和结果处理等多个部分。每个部分都是为最终的图像生成服务的,依次完成数据准备、模型应用、图像生成和后期处理的工作。
文心一言的分析:
这段代码的主体框架可以分为以下几个部分:
- 环境配置与依赖安装:
- 使用
pip
命令安装和卸载必要的Python库,包括simple-aesthetics-predictor
、data-juicer
(以可编辑模式安装)、peft
、lightning
、pandas
、torchvision
和DiffSynth-Studio
。 - 卸载
pytorch-lightning
库,避免版本冲突。
- 使用
- 数据准备:
- 使用
modelscope.msdatasets
从AI-ModelScope加载低分辨率动漫数据集,并指定缓存目录。 - 创建数据目录结构,将加载的数据集图片保存到指定路径,并生成对应的元数据文件(
metadata.jsonl
),包含图片路径和文本标签。
- 使用
- 数据预处理:
- 编写
data_juicer
配置文件,定义数据处理的参数和流程,如图片尺寸和宽高比过滤。 - 使用
dj-process
命令和配置文件对数据进行预处理,生成过滤后的结果集。
- 编写
- 数据处理与CSV导出:
- 从预处理结果中读取元数据,将文本和图片路径信息提取出来,保存到Pandas DataFrame中。
- 将DataFrame导出为CSV文件,方便后续处理。
- 图像文本相似度评估:
- 加载CLIP模型和处理器,用于计算图像和文本之间的相似度。
- 使用CLIP模型对预处理后的数据集进行图像和文本的相似度评估,并打印结果。
- 自定义数据集与数据加载:
- 定义了一个继承自
torch.utils.data.Dataset
的CustomDataset
类,用于加载自定义的图像和文本数据。 - 实例化
CustomDataset
并使用DataLoader
进行批量加载,以便在训练或评估中使用。
- 定义了一个继承自
- 图像生成:
- 使用
StableDiffusionPipeline
从diffusers
库生成基于给定提示(prompt)的图像。 - 通过调整不同的提示、负向提示(negative_prompt)、配置(cfg_scale)和推理步数(num_inference_steps)等参数,生成多个不同的图像,并保存到本地。
- 使用
- 图像拼接与展示:
- 读取之前生成的多个图像,将它们拼接成一个大的图像。
- 展示拼接后的图像。
这个代码框架涵盖了从数据准备、预处理、评估到图像生成的完整流程,展示了在AI模型开发中,特别是基于文本到图像生成任务中的典型工作流程。
二、实战演练一一基于话剧的连环画制作
1.让通义千问帮我编一个8张图的故事:
提示词没啥大毛病,不过根据需要要加风格提示词和负面提示词
负面提示词:丑陋,变形,嘈杂,模糊,低对比度
2.执行Task1的30分钟速通Baseline
3.替换prompt
4.生成图片并保存
TASK2总结:学会了使用AI分析程序代码,相对于封装好的Stable diffusion,从代码层面详细了解了AI图片生成过程,但是对代码的设计具体操作依然不了解,想知道更多代码的具体应用,比如导入不同库和基础模型的方法,库和模型的获取方法等等,代码调用和Stable diffusion 秋叶WebUI生图的区别等等。
标签:task2,prompt,AI,image,AIGC,juicer,images,import,data From: https://blog.csdn.net/weixin_43914529/article/details/141188937