boosting类算法 和 bagging类算法最本质的差别在于他对基础模型不是一致对待的,而是经过不停的考验和筛选来挑选出“精英”,然后给精英更多的投票权,表现不好的基础模型则给较少的投票权,然后综合所有人的投票得到最终结果。
大部分情况下,经过 boosting 得到的结果偏差(bias)更小。
具体过程:
- 通过加法模型将基础模型进行线性的组合。
- 每一轮训练都提升那些错误率小的基础模型权重,同时减小错误率高的模型权重。
- 在每一轮改变训练数据的权值或概率分布,通过提高那些在前一轮被弱分类器分错样例的权值,减小前一轮分对样例的权值,来使得分类器对误分的数据有较好的效果。