一、实验目的
能够理解 POX 控制器的工作原理;
通过验证POX的forwarding.hub和forwarding.l2_learning模块,初步掌握POX控制器的使用方法;
能够运用 POX控制器编写自定义网络应用程序,进一步熟悉POX控制器流表下发的方法。
二、实验环境
Ubuntu 20.04 Desktop amd64
三、实验要求
(一)基本要求
搭建下图所示SDN拓扑,协议使用Open Flow 1.0,控制器使用部署于本地的POX(默认监听6633端口)
阅读Hub模块代码,使用 tcpdump 验证Hub模块;
阅读L2_learning模块代码,画出程序流程图,使用 tcpdump 验证Switch模块。
(二)进阶要求
重新搭建(一)的拓扑,此时交换机内无流表规则,拓扑内主机互不相通;编写Python程序自定义一个POX模块SendFlowInSingle3,并且将拓扑连接至SendFlowInSingle3(默认端口6633),实现向s1发送流表规则使得所有主机两两互通。
基于进阶1的代码,完成ODL实验的硬超时功能。
(三)实验报告
请用Markdown排版;
所有实验相关代码文件(如有)保存在目录/home/用户名/学号/lab5/中;
基础要求只需要提交h1 ping h2、h2和h3的tcpdump抓包结果截图,外加L2_learning模块代码流程图,其余文字请勿赘述;
(1)阅读Hub模块代码,使用 tcpdump 验证Hub模块;
h1 ping h2
h1 ping h3
h2,h3都可以接收到icmp报文
(2)阅读L2_learning模块代码,画出程序流程图,使用 tcpdump 验证Switch模块。
进阶要求
搭建拓扑:sudo mn --topo=single,3 --mac --controller=remote,ip=127.0.0.1,port=6633 --switch ovsk,protocols=OpenFlow10
进入pox文件夹 输入:./pox.py SendFlowInSingle3
在mininet>输入:h1 ping h3
此时应该ping通,10s后 ctrl+C 停止SendFlowInSingle3
新建终端进入pox:./pox.py SendPoxHardTimeOut实现中断,10s后 ctrl+C停止SendPoxHardTimeOut
回到SendFlowInSingle3终端 输入:./pox.py SendFlowInSingle3实现恢复
总结
对POX控制器有了一定的了解,对于hub模块有了更进一步的认识,在h1 ping h2时 h2 和 h3,都能收到ICMP报文,说明Hub模块在每个交换机上安装泛洪通配符规则,将数据包广播转发,此时交换机等效于集线器或广播交换机。通过本次实验,我学习到了新知识,能够理解 POX 控制器的工作原理;通过验证POX的forwarding.hub和forwarding.l2_learning模块,掌握POX控制器的使用方法;Hub模块在h1 ping h2和 h3时候都能收到icmp报文,说明在每个交换机上安装泛洪通配符规则,将数据包广播转发,此时交换机等效于集线器 Switch模块在h1 ping h2时,只有h2能收到icmp报文,说明让OpenFlow交换机成为2层自学习交换机。当组件学习到2层地址时,流表会建立精确匹配说明switch模块。