首页 > 其他分享 >CLAM实现指定区域分割

CLAM实现指定区域分割

时间:2024-08-09 17:23:42浏览次数:14  
标签:CLAM level 区域分割 self holes 指定 patch params size

CLAMicon-default.png?t=N7T8https://github.com/mahmoodlab/CLAM        CLAM(Clustering-constrained Attention Multiple Instance Learning)。旨在用于数据高效的弱监督计算病理学,特别是使用切片级标签对全切片图像(WSI)进行分类,无需提取感兴趣区域  (ROI)或进行切片级别的标注

         先允许交代一下背景,以免班门弄斧之嫌。是帮师兄实现一下指定区域的分割(使用mask_file做分割)这一功能。代码中实现segment方法时,已经给定了initSegmentation,就是对其动手。主要是对 create_patches_fp.py 和 WholeSlideImage.py进行重构,当然还有mask_file的处理,师兄标注处理完后.xml格式,提取组织轮廓和孔洞的坐标转换为.pkl文件

          配置完成,简单运行一下。估计和大家得到的结果一样,两份拼接过后的图片和hdf5文件(记录图像块坐标)

--save_dir RESULTS_DIRECTORY    #输出就在该目录下的三个文件夹中(masks、patches、stitches)

自动区域分割原始结果: 

 分割示意       (.h5)    分割结果

指定区域分割修改效果:

python  path\create_patches_fp.py --source  path\DATA_DIRECTORY_test --save_dir  path\RESULTS_DIRECTORY --patch --seg --stitch --mask_dir  path\MASK_DIRECTORY

 此时终端需要指定 --mask_dir  path\MASK_DIRECTORY

                                       

 create_patches_fp.py 

import ctypes
import os
import time
import argparse
import pandas as pd
import numpy as np
from tqdm import tqdm
from wsi_core.WholeSlideImage import WholeSlideImage
from wsi_core.wsi_utils import StitchCoords
from wsi_core.batch_process_utils import initialize_df





def stitching(file_path, wsi_object, downscale=64):
    start = time.time()
    heatmap = StitchCoords(file_path, wsi_object, downscale=downscale, bg_color=(0,0,0), alpha=-1, draw_grid=False)
    total_time = time.time() - start
    return heatmap, total_time

def segment(WSI_object, seg_params=None, filter_params=None, mask_file=None):
    start_time = time.time()
    if mask_file is not None and os.path.isfile(mask_file):
        WSI_object.initSegmentation(mask_file)
    #else:
        #WSI_object.segmentTissue(**seg_params, filter_params=filter_params)
    seg_time_elapsed = time.time() - start_time
    return WSI_object, seg_time_elapsed

def patching(WSI_object, **kwargs):
    start_time = time.time()
    file_path = WSI_object.process_contours(**kwargs)
    patch_time_elapsed = time.time() - start_time
    return file_path, patch_time_elapsed

def seg_and_patch(source, save_dir, patch_save_dir, mask_save_dir, stitch_save_dir,
                  mask_dir, patch_size=256, step_size=256, 
                  seg_params={'seg_level': -1, 'sthresh': 8, 'mthresh': 7, 'close': 4, 'use_otsu': False, 
                              'keep_ids': 'none', 'exclude_ids': 'none'},
                  filter_params={'a_t': 100, 'a_h': 16, 'max_n_holes': 8},
                  vis_params={'vis_level': -1, 'line_thickness': 500},
                  patch_params={'use_padding': True, 'contour_fn': 'four_pt'}, patch_level=0, 
                  use_default_params=False, seg=False, save_mask=True, 
                  stitch=False, patch=False, auto_skip=True, process_list=None):

    slides = sorted(os.listdir(source))
    slides = [slide for slide in slides if os.path.isfile(os.path.join(source, slide))]
    if process_list is None:
        df = initialize_df(slides, seg_params, filter_params, vis_params, patch_params)
    else:
        df = pd.read_csv(process_list)
        df = initialize_df(df, seg_params, filter_params, vis_params, patch_params)

    mask = df['process'] == 1
    process_stack = df[mask]
    total = len(process_stack)
    legacy_support = 'a' in df.keys()
    if legacy_support:
        print('Detected legacy segmentation csv file, legacy support enabled')
        df = df.assign(**{'a_t': np.full((len(df)), int(filter_params['a_t']), dtype=np.uint32),
                          'a_h': np.full((len(df)), int(filter_params['a_h']), dtype=np.uint32),
                          'max_n_holes': np.full((len(df)), int(filter_params['max_n_holes']), dtype=np.uint32),
                          'line_thickness': np.full((len(df)), int(vis_params['line_thickness']), dtype=np.uint32),
                          'contour_fn': np.full((len(df)), patch_params['contour_fn'])})

    seg_times = 0.0
    patch_times = 0.0
    stitch_times = 0.0

    for i in tqdm(range(total)):
        df.to_csv(os.path.join(save_dir, 'process_list_autogen.csv'), index=False)
        idx = process_stack.index[i]
        slide = process_stack.loc[idx, 'slide_id']
        print("\n\nProgress: {:.2f}, {}/{}".format(i / total, i, total))
        print('Processing {}'.format(slide))
        df.loc[idx, 'process'] = 0
        slide_id, _ = os.path.splitext(slide)
        if auto_skip and os.path.isfile(os.path.join(patch_save_dir, slide_id + '.h5')):
            print('{} already exists in destination location, skipped'.format(slide_id))
            df.loc[idx, 'status'] = 'already_exist'
            continue

        full_path = os.path.join(source, slide)
        WSI_object = WholeSlideImage(full_path)

        if use_default_params:
            current_vis_params = vis_params.copy()
            current_filter_params = filter_params.copy()
            current_seg_params = seg_params.copy()
            current_patch_params = patch_params.copy()
        else:
            current_vis_params = {}
            current_filter_params = {}
            current_seg_params = {}
            current_patch_params = {}
            for key in vis_params.keys():
                if legacy_support and key == 'vis_level':
                    df.loc[idx, key] = -1
                current_vis_params.update({key: df.loc[idx, key]})
            for key in filter_params.keys():
                if legacy_support and key == 'a_t':
                    old_area = df.loc[idx, 'a']
                    seg_level = df.loc[idx, 'seg_level']
                    scale = WSI_object.level_downsamples[seg_level]
                    adjusted_area = int(old_area * (scale[0] * scale[1]) / (512 * 512))
                    current_filter_params.update({key: adjusted_area})
                    df.loc[idx, key] = adjusted_area
                current_filter_params.update({key: df.loc[idx, key]})
            for key in seg_params.keys():
                if legacy_support and key == 'seg_level':
                    df.loc[idx, key] = -1
                current_seg_params.update({key: df.loc[idx, key]})
            for key in patch_params.keys():
                current_patch_params.update({key: df.loc[idx, key]})

        if current_vis_params['vis_level'] < 0:
            if len(WSI_object.level_dim) == 1:
                current_vis_params['vis_level'] = 0
            else:
                wsi = WSI_object.getOpenSlide()
                best_level = wsi.get_best_level_for_downsample(64)
                current_vis_params['vis_level'] = best_level

        if current_seg_params['seg_level'] < 0:
            if len(WSI_object.level_dim) == 1:
                current_seg_params['seg_level'] = 0
            else:
                wsi = WSI_object.getOpenSlide()
                best_level = wsi.get_best_level_for_downsample(64)
                current_seg_params['seg_level'] = best_level

        keep_ids = str(current_seg_params['keep_ids'])
        if keep_ids != 'none' and len(keep_ids) > 0:
            str_ids = current_seg_params['keep_ids']
            current_seg_params['keep_ids'] = np.array(str_ids.split(',')).astype(int)
        else:
            current_seg_params['keep_ids'] = []

        exclude_ids = str(current_seg_params['exclude_ids'])
        if exclude_ids != 'none' and len(exclude_ids) > 0:
            str_ids = current_seg_params['exclude_ids']
            current_seg_params['exclude_ids'] = np.array(str_ids.split(',')).astype(int)
        else:
            current_seg_params['exclude_ids'] = []

        w, h = WSI_object.level_dim[current_seg_params['seg_level']]
        if w * h > 1e8:
            print('level_dim {} x {} is likely too large for successful segmentation, aborting'.format(w, h))
            df.loc[idx, 'status'] = 'failed_seg'
            continue

        df.loc[idx, 'vis_level'] = current_vis_params['vis_level']
        df.loc[idx, 'seg_level'] = current_seg_params['seg_level']

        seg_time_elapsed = -1
        mask_file = os.path.join(mask_dir, f"{slide_id}.pkl")
        if seg:
            WSI_object, seg_time_elapsed = segment(WSI_object, current_seg_params, current_filter_params, mask_file)

        if save_mask:
            mask = WSI_object.visWSI(**current_vis_params)
            mask_path = os.path.join(mask_save_dir, slide_id + '.jpg')
            mask.save(mask_path)

        patch_time_elapsed = -1
        if patch:
            current_patch_params.update({'patch_level': patch_level, 'patch_size': patch_size, 'step_size': step_size,
                                         'save_path': patch_save_dir})
            file_path, patch_time_elapsed = patching(WSI_object=WSI_object, **current_patch_params)

        stitch_time_elapsed = -1
        if stitch:
            file_path = os.path.join(patch_save_dir, slide_id + '.h5')
            if os.path.isfile(file_path):
                heatmap, stitch_time_elapsed = stitching(file_path, WSI_object, downscale=64)
                stitch_path = os.path.join(stitch_save_dir, slide_id + '.jpg')
                heatmap.save(stitch_path)

        print("Segmentation took {} seconds".format(seg_time_elapsed))
        print("Patching took {} seconds".format(patch_time_elapsed))
        print("Stitching took {} seconds".format(stitch_time_elapsed))
        df.loc[idx, 'status'] = 'processed'
        seg_times += seg_time_elapsed
        patch_times += patch_time_elapsed
        stitch_times += stitch_time_elapsed

    seg_times /= total
    patch_times /= total
    stitch_times /= total

    df.to_csv(os.path.join(save_dir, 'process_list_autogen.csv'), index=False)
    print("Average segmentation time in seconds per slide: {}".format(seg_times))
    print("Average patching time in seconds per slide: {}".format(patch_times))
    print("Average stitching time in seconds per slide: {}".format(stitch_times))
    
    return seg_times, patch_times

parser = argparse.ArgumentParser(description='seg and patch')
parser.add_argument('--source', type=str, help='path to folder containing raw wsi image files')
parser.add_argument('--step_size', type=int, default=256, help='step_size')
parser.add_argument('--patch_size', type=int, default=256, help='patch_size')
parser.add_argument('--patch', default=False, action='store_true')
parser.add_argument('--seg', default=False, action='store_true')
parser.add_argument('--stitch', default=False, action='store_true')
parser.add_argument('--no_auto_skip', default=True, action='store_false')
parser.add_argument('--save_dir', type=str, help='directory to save processed data')
parser.add_argument('--preset', default=None, type=str, help='predefined profile of default segmentation and filter parameters (.csv)')
parser.add_argument('--patch_level', type=int, default=0, help='downsample level at which to patch')
parser.add_argument('--process_list', type=str, default=None, help='name of list of images to process with parameters (.csv)')
parser.add_argument('--mask_dir', type=str, help='directory containing mask files')

if __name__ == '__main__':
    args = parser.parse_args()
    patch_save_dir = os.path.join(args.save_dir, 'patches')
    mask_save_dir = os.path.join(args.save_dir, 'masks')
    stitch_save_dir = os.path.join(args.save_dir, 'stitches')

    if args.process_list:
        process_list = os.path.join(args.save_dir, args.process_list)
    else:
        process_list = None

    print('source: ', args.source)
    print('patch_save_dir: ', patch_save_dir)
    print('mask_save_dir: ', mask_save_dir)
    print('stitch_save_dir: ', stitch_save_dir)

    directories = {'source': args.source,
                   'save_dir': args.save_dir,
                   'patch_save_dir': patch_save_dir,
                   'mask_save_dir': mask_save_dir,
                   'stitch_save_dir': stitch_save_dir,
                   'mask_dir': args.mask_dir}

    for key, val in directories.items():
        print("{} : {}".format(key, val))
        if key not in ['source', 'mask_dir']:
            os.makedirs(val, exist_ok=True)

    seg_params = {'seg_level': -1, 'sthresh': 8, 'mthresh': 7, 'close': 4, 'use_otsu': False,
                  'keep_ids': 'none', 'exclude_ids': 'none'}
    filter_params = {'a_t': 100, 'a_h': 16, 'max_n_holes': 8}
    vis_params = {'vis_level': -1, 'line_thickness': 250}
    patch_params = {'use_padding': True, 'contour_fn': 'four_pt'}

    if args.preset:
        preset_df = pd.read_csv(os.path.join('presets', args.preset))
        for key in seg_params.keys():
            seg_params[key] = preset_df.loc[0, key]
        for key in filter_params.keys():
            filter_params[key] = preset_df.loc[0, key]
        for key in vis_params.keys():
            vis_params[key] = preset_df.loc[0, key]
        for key in patch_params.keys():
            patch_params[key] = preset_df.loc[0, key]

    parameters = {'seg_params': seg_params,
                  'filter_params': filter_params,
                  'patch_params': patch_params,
                  'vis_params': vis_params}

    seg_times, patch_times = seg_and_patch(**directories, **parameters,
                                           patch_size=args.patch_size, step_size=args.step_size,
                                           seg=args.seg, use_default_params=False, save_mask=True,
                                           stitch=args.stitch, patch_level=args.patch_level, patch=args.patch,
                                           process_list=process_list, auto_skip=args.no_auto_skip)

 WholeSlideImage.py

import math
import os
import time
import xml.etree.ElementTree as ET
from pprint import pprint
from xml.dom import minidom
import multiprocessing as mp
import cv2
import matplotlib.pyplot as plt
import numpy as np
import openslide
from PIL import Image
import pdb
import h5py
import math
from wsi_core.wsi_utils import savePatchIter_bag_hdf5, initialize_hdf5_bag, coord_generator, save_hdf5, sample_indices, screen_coords, isBlackPatch, isWhitePatch, to_percentiles
import itertools
from wsi_core.util_classes import isInContourV1, isInContourV2, isInContourV3_Easy, isInContourV3_Hard, Contour_Checking_fn
from utils.file_utils import load_pkl, save_pkl
from multiprocessing import Pool

Image.MAX_IMAGE_PIXELS = 933120000






class WholeSlideImage(object):

    printed_processes = set()  # 全局集合,记录已经打印过的进程 ID

    def __init__(self, path):

        """
        Args:
            path (str): fullpath to WSI file
        """

#         self.name = ".".join(path.split("/")[-1].split('.')[:-1])
        self.name = os.path.splitext(os.path.basename(path))[0]
        self.wsi = openslide.open_slide(path)
        self.level_downsamples = self._assertLevelDownsamples()
        self.level_dim = self.wsi.level_dimensions

        self.holes_tissue = None
        self.contours_tissue = None
        self.contours_tumor = None
        self.hdf5_file = None

    def getOpenSlide(self):
        return self.wsi

    def initXML(self, xml_path):
        def _createContour(coord_list):
            return np.array([[[int(float(coord.attributes['X'].value)),
                               int(float(coord.attributes['Y'].value))]] for coord in coord_list], dtype = 'int32')

        xmldoc = minidom.parse(xml_path)
        annotations = [anno.getElementsByTagName('Coordinate') for anno in xmldoc.getElementsByTagName('Annotation')]
        self.contours_tumor  = [_createContour(coord_list) for coord_list in annotations]
        self.contours_tumor = sorted(self.contours_tumor, key=cv2.contourArea, reverse=True)

    def initTxt(self,annot_path):
        def _create_contours_from_dict(annot):
            all_cnts = []
            for idx, annot_group in enumerate(annot):
                contour_group = annot_group['coordinates']
                if annot_group['type'] == 'Polygon':
                    for idx, contour in enumerate(contour_group):
                        contour = np.array(contour).astype(np.int32).reshape(-1,1,2)
                        all_cnts.append(contour)

                else:
                    for idx, sgmt_group in enumerate(contour_group):
                        contour = []
                        for sgmt in sgmt_group:
                            contour.extend(sgmt)
                        contour = np.array(contour).astype(np.int32).reshape(-1,1,2)
                        all_cnts.append(contour)

            return all_cnts

        with open(annot_path, "r") as f:
            annot = f.read()
            annot = eval(annot)
        self.contours_tumor  = _create_contours_from_dict(annot)
        self.contours_tumor = sorted(self.contours_tumor, key=cv2.contourArea, reverse=True)

    def initSegmentation(self, mask_file):
        # load segmentation results from pickle file
        import pickle
        asset_dict = load_pkl(mask_file)

        def _convert_to_numpy(contours):
            return [np.array(contour).astype(np.int32).reshape(-1, 1, 2) for contour in contours]

        self.holes_tissue = [_convert_to_numpy(holes) for holes in asset_dict['holes']]
        self.contours_tissue = _convert_to_numpy(asset_dict['tissue'])

        print(f"Loaded {len(self.holes_tissue)} holes and {len(self.contours_tissue)} tissue contours from {mask_file}")

    def saveSegmentation(self, mask_file):
        # save segmentation results using pickle
        asset_dict = {'holes': self.holes_tissue, 'tissue': self.contours_tissue}
        save_pkl(mask_file, asset_dict)

    def segmentTissue(self, seg_level=0, sthresh=20, sthresh_up = 255, mthresh=7, close = 0, use_otsu=False,
                            filter_params={'a_t':100}, ref_patch_size=512, exclude_ids=[], keep_ids=[]):
        """
            Segment the tissue via HSV -> Median thresholding -> Binary threshold
        """

        def _filter_contours(contours, hierarchy, filter_params):
            """
                Filter contours by: area.
            """
            filtered = []

            # find indices of foreground contours (parent == -1)
            hierarchy_1 = np.flatnonzero(hierarchy[:,1] == -1)
            all_holes = []

            # loop through foreground contour indices
            for cont_idx in hierarchy_1:
                # actual contour
                cont = contours[cont_idx]
                # indices of holes contained in this contour (children of parent contour)
                holes = np.flatnonzero(hierarchy[:, 1] == cont_idx)
                # take contour area (includes holes)
                a = cv2.contourArea(cont)
                # calculate the contour area of each hole
                hole_areas = [cv2.contourArea(contours[hole_idx]) for hole_idx in holes]
                # actual area of foreground contour region
                a = a - np.array(hole_areas).sum()
                if a == 0: continue
                if tuple((filter_params['a_t'],)) < tuple((a,)):
                    filtered.append(cont_idx)
                    all_holes.append(holes)


            foreground_contours = [contours[cont_idx] for cont_idx in filtered]

            hole_contours = []

            for hole_ids in all_holes:
                unfiltered_holes = [contours[idx] for idx in hole_ids ]
                unfilered_holes = sorted(unfiltered_holes, key=cv2.contourArea, reverse=True)
                # take max_n_holes largest holes by area
                unfilered_holes = unfilered_holes[:filter_params['max_n_holes']]
                filtered_holes = []

                # filter these holes
                for hole in unfilered_holes:
                    if cv2.contourArea(hole) > filter_params['a_h']:
                        filtered_holes.append(hole)

                hole_contours.append(filtered_holes)

            return foreground_contours, hole_contours

        img = np.array(self.wsi.read_region((0,0), seg_level, self.level_dim[seg_level]))
        img_hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)  # Convert to HSV space
        img_med = cv2.medianBlur(img_hsv[:,:,1], mthresh)  # Apply median blurring


        # Thresholding
        if use_otsu:
            _, img_otsu = cv2.threshold(img_med, 0, sthresh_up, cv2.THRESH_OTSU+cv2.THRESH_BINARY)
        else:
            _, img_otsu = cv2.threshold(img_med, sthresh, sthresh_up, cv2.THRESH_BINARY)

        # Morphological closing
        if close > 0:
            kernel = np.ones((close, close), np.uint8)
            img_otsu = cv2.morphologyEx(img_otsu, cv2.MORPH_CLOSE, kernel)

        scale = self.level_downsamples[seg_level]
        scaled_ref_patch_area = int(ref_patch_size**2 / (scale[0] * scale[1]))
        filter_params = filter_params.copy()
        filter_params['a_t'] = filter_params['a_t'] * scaled_ref_patch_area
        filter_params['a_h'] = filter_params['a_h'] * scaled_ref_patch_area

        # Find and filter contours
        contours, hierarchy = cv2.findContours(img_otsu, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE) # Find contours
        hierarchy = np.squeeze(hierarchy, axis=(0,))[:, 2:]
        if filter_params: foreground_contours, hole_contours = _filter_contours(contours, hierarchy, filter_params)  # Necessary for filtering out artifacts

        self.contours_tissue = self.scaleContourDim(foreground_contours, scale)
        self.holes_tissue = self.scaleHolesDim(hole_contours, scale)

        #exclude_ids = [0,7,9]
        if len(keep_ids) > 0:
            contour_ids = set(keep_ids) - set(exclude_ids)
        else:
            contour_ids = set(np.arange(len(self.contours_tissue))) - set(exclude_ids)

        self.contours_tissue = [self.contours_tissue[i] for i in contour_ids]
        self.holes_tissue = [self.holes_tissue[i] for i in contour_ids]

    def visWSI(self, vis_level=0, color=(0, 255, 0), hole_color=(0, 0, 255), annot_color=(255, 0, 0),
               line_thickness=250, max_size=None, top_left=None, bot_right=None, custom_downsample=1,
               view_slide_only=False, number_contours=False, seg_display=True, annot_display=True):

        downsample = self.level_downsamples[vis_level]
        scale = [1 / downsample[0], 1 / downsample[1]]

        if top_left is not None and bot_right is not None:
            top_left = tuple(top_left)
            bot_right = tuple(bot_right)
            w, h = tuple((np.array(bot_right) * scale).astype(int) - (np.array(top_left) * scale).astype(int))
            region_size = (w, h)
        else:
            top_left = (0, 0)
            region_size = self.level_dim[vis_level]

        img = np.array(self.wsi.read_region(top_left, vis_level, region_size).convert("RGB"))

        if not view_slide_only:
            offset = tuple(-(np.array(top_left) * scale).astype(int))
            line_thickness = int(line_thickness * np.sqrt(scale[0] * scale[1]))
            if self.contours_tissue is not None and seg_display:
                if not number_contours:
                    cv2.drawContours(img, self.scaleContourDim(self.contours_tissue, scale),
                                     -1, color, line_thickness, lineType=cv2.LINE_8, offset=offset)
                else:
                    for idx, cont in enumerate(self.contours_tissue):
                        contour = np.array(self.scaleContourDim(cont, scale))
                        M = cv2.moments(contour)
                        cX = int(M["m10"] / (M["m00"] + 1e-9))
                        cY = int(M["m01"] / (M["m00"] + 1e-9))
                        cv2.drawContours(img, [contour], -1, color, line_thickness, lineType=cv2.LINE_8, offset=offset)
                        cv2.putText(img, "{}".format(idx), (cX, cY),
                                    cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0), 10)

            # 绘制孔洞轮廓
            if self.holes_tissue is not None:
                for hole in self.holes_tissue:
                    hole_points = np.array(hole)  # 确保孔洞数据是numpy数组格式
                    scaled_hole = self.scaleContourDim(hole_points, scale)
                    # 确保 scaled_hole 是二维点数组
                    scaled_hole = np.array(scaled_hole, dtype=np.int32).reshape((-1, 1, 2))
                    # 创建一个空白图像来绘制孔洞
                    blank_image = np.zeros((img.shape[0], img.shape[1]), dtype=np.uint8)
                    cv2.drawContours(blank_image, [scaled_hole], -1, 255, thickness=cv2.FILLED)
                    # 使用 cv2.findContours 检测孔洞轮廓
                    contours, _ = cv2.findContours(blank_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
                    cv2.drawContours(img, contours, -1, hole_color, line_thickness, lineType=cv2.LINE_8, offset=offset)

            if self.contours_tumor is not None and annot_display:
                cv2.drawContours(img, self.scaleContourDim(self.contours_tumor, scale),
                                 -1, annot_color, line_thickness, lineType=cv2.LINE_8, offset=offset)

        img = Image.fromarray(img)

        w, h = img.size
        if custom_downsample > 1:
            img = img.resize((int(w / custom_downsample), int(h / custom_downsample)))

        if max_size is not None and (w > max_size or h > max_size):
            resizeFactor = max_size / w if w > h else max_size / h
            img = img.resize((int(w * resizeFactor), int(h * resizeFactor)))

        return img

    def createPatches_bag_hdf5(self, save_path, patch_level=0, patch_size=256, step_size=256, save_coord=True,
                               **kwargs):
        contours = self.contours_tissue
        contour_holes = self.holes_tissue

        # 打印 contour_holes 的内容
        print(f"Contour Holes: {contour_holes}")

        print("Creating patches for: ", self.name, "...")
        elapsed = time.time()

        for idx, cont in enumerate(contours):
            holes = contour_holes[idx] if idx < len(contour_holes) else []

            # 打印 holes 的内容
            print(f"holes for contour {idx}: {holes}")

            # 包含轮廓和其孔洞的信息
            contour_with_holes = {
                'contour': cont,
                'holes': holes
            }

            # 生成块生成器
            patch_gen = self._getPatchGenerator(contour_with_holes, idx, patch_level, save_path, patch_size, step_size,
                                                **kwargs)

            if self.hdf5_file is None:
                try:
                    first_patch = next(patch_gen)
                except StopIteration:
                    continue

                file_path = initialize_hdf5_bag(first_patch, save_coord=save_coord)
                self.hdf5_file = file_path

            for patch in patch_gen:
                patch['contour_holes'] = holes  # 添加 holes 信息
                print(f"Adding contour_holes to patch: {holes}")
                savePatchIter_bag_hdf5(patch)

        return self.hdf5_file

    def _getPatchGenerator(self, cont, cont_idx, patch_level, save_path, patch_size=256, step_size=256,
                           custom_downsample=1,
                           white_black=True, white_thresh=15, black_thresh=50, contour_fn='four_pt_hard',
                           use_padding=True):
        holes = cont.get('holes', [])
        print(f"holes in _getPatchGenerator for contour {cont_idx}: {holes}")

        start_x, start_y, w, h = cv2.boundingRect(cont) if cont is not None else (
            0, 0, self.level_dim[patch_level][0], self.level_dim[patch_level][1])
        print("BoundingBox:", start_x, start_y, w, h)
        print("Contour Area:", cv2.contourArea(cont))
        print(f"Number of holes: {len(self.holes_tissue[cont_idx])}")

        if custom_downsample > 1:
            assert custom_downsample == 2
            target_patch_size = patch_size
            patch_size = target_patch_size * 2
            step_size = step_size * 2
            print(
                "Custom Downsample: {}, Patching at {} x {}, But Final Patch Size is {} x {}".format(custom_downsample,
                                                                                                     patch_size,
                                                                                                     patch_size,
                                                                                                     target_patch_size,
                                                                                                     target_patch_size))

        patch_downsample = (int(self.level_downsamples[patch_level][0]), int(self.level_downsamples[patch_level][1]))
        ref_patch_size = (patch_size * patch_downsample[0], patch_size * patch_downsample[1])

        step_size_x = step_size * patch_downsample[0]
        step_size_y = step_size * patch_downsample[1]

        if isinstance(contour_fn, str):
            if contour_fn == 'four_pt':
                cont_check_fn = isInContourV3_Easy(contour=cont, patch_size=ref_patch_size[0], center_shift=0.5)
            elif contour_fn == 'four_pt_hard':
                cont_check_fn = isInContourV3_Hard(contour=cont, patch_size=ref_patch_size[0], center_shift=0.5)
            elif contour_fn == 'center':
                cont_check_fn = isInContourV2(contour=cont, patch_size=ref_patch_size[0])
            elif contour_fn == 'basic':
                cont_check_fn = isInContourV1(contour=cont)
            else:
                raise NotImplementedError
        else:
            assert isinstance(contour_fn, Contour_Checking_fn)
            cont_check_fn = contour_fn

        img_w, img_h = self.level_dim[0]
        if use_padding:
            stop_y = start_y + h
            stop_x = start_x + w
        else:
            stop_y = min(start_y + h, img_h - ref_patch_size[1])
            stop_x = min(start_x + w, img_w - ref_patch_size[0])

        count = 0
        for y in range(start_y, stop_y, step_size_y):
            for x in range(start_x, stop_x, step_size_x):
                point = (x + ref_patch_size[0] // 2, y + ref_patch_size[1] // 2)
                if not self.isInContours(cont_check_fn, (x, y), self.holes_tissue[cont_idx]):
                    continue

                count += 1
                patch_PIL = self.wsi.read_region((x, y), patch_level, (patch_size, patch_size)).convert('RGB')
                if custom_downsample > 1:
                    patch_PIL = patch_PIL.resize((target_patch_size, target_patch_size))

                if white_black:
                    if isBlackPatch(np.array(patch_PIL), rgbThresh=black_thresh) or isWhitePatch(np.array(patch_PIL),
                                                                                                 satThresh=white_thresh):
                        continue

                patch_info = {'x': x // (patch_downsample[0] * custom_downsample),
                              'y': y // (patch_downsample[1] * custom_downsample), 'cont_idx': cont_idx,
                              'patch_level': patch_level,
                              'downsample': self.level_downsamples[patch_level], 'downsampled_level_dim': tuple(
                        np.array(self.level_dim[patch_level]) // custom_downsample),
                              'level_dim': self.level_dim[patch_level],
                              'patch_PIL': patch_PIL, 'name': self.name, 'save_path': save_path}

                yield patch_info

        print("patches extracted: {}".format(count))

    @staticmethod
    def isInHoles(pt, contour_holes):
        """检查点是否在任何孔洞内,并打印在孔洞内的点的信息。"""
        # 获取当前进程 ID
        current_process_id = os.getpid()

        # 打印 contour_holes 的内容,只打印一次
        if current_process_id not in WholeSlideImage.printed_processes:
            #print(f"Process ID: {current_process_id}, Contour Holes: {contour_holes}")
            WholeSlideImage.printed_processes.add(current_process_id)

        # 遍历所有孔洞,检查点是否在任一孔洞内
        for index, hole in enumerate(contour_holes):
            if hole.size == 0:
                continue  # 跳过空孔洞

            # 转换 4D 数组为 3D 数组
            hole = hole.reshape(-1, 1, 2)

            # 确保 hole 的数据类型是 np.int32 或 np.float32
            if hole.dtype != np.int32 and hole.dtype != np.float32:
                hole = hole.astype(np.int32)

            # 使用 cv2.boundingRect 找到孔洞的边界框
            x, y, w, h = cv2.boundingRect(hole)
            if not (x <= pt[0] <= x + w and y <= pt[1] <= y + h):
                continue  # 点不在当前孔洞的边界框内,继续检查下一个孔洞

            # 如果点在边界框内,使用 pointPolygonTest 进行精确的多边形测试
            pt_tuple = (int(pt[0]), int(pt[1]))  # 确保 pt 是包含两个整数的元组
            if cv2.pointPolygonTest(hole, pt_tuple, False) >= 0:
                print(f"Point {pt_tuple} is inside hole {index}.")  # 打印点和它所在的孔洞索引
                return True  # 点在孔洞内

        return False  # 点不在任何孔洞内

    @staticmethod
    def isInContours(cont_check_fn, pt, contour_holes=None, patch_size=None):
        """检查点是否在轮廓内且不在孔洞内,可选地使用patch_size参数。"""
        if cont_check_fn(pt):
            if contour_holes and WholeSlideImage.isInHoles(pt, contour_holes):
                print(f"Point {pt} is in holes and will be excluded.")
                return False  # 点在孔洞内
            return True  # 点在轮廓内且不在孔洞内
        return False  # 点不在轮廓内



    @staticmethod
    def scaleContourDim(contours, scale):
        # 确保scale是浮点数
        if isinstance(scale, (list, tuple)):
            scale_x, scale_y = scale
        else:
            scale_x = scale_y = scale

        scaled_contours = []
        for cont in contours:
            #print(f"Processing contour: {cont}")  # 添加调试信息
            try:
                # 检查并转换轮廓点的格式
                if isinstance(cont, np.ndarray):
                    cont = cont.reshape(-1, 2)
                scaled_contour = np.array([[int(x * scale_x), int(y * scale_y)] for x, y in cont], dtype='int32').reshape(-1, 1, 2)
                scaled_contours.append(scaled_contour)
            except TypeError as e:
                print(f"Error processing contour: {e}")
                print(f"Contour data: {cont}")

        return scaled_contours


    @staticmethod
    def scaleHolesDim(holes, scale):
        scale_x, scale_y = scale if isinstance(scale, (list, tuple)) else (scale, scale)
        scaled_holes = []
        for hole in holes:
            hole = np.array(hole).reshape(-1, 2)
            scaled_hole = np.array([[int(x * scale_x), int(y * scale_y)] for x, y in hole], dtype='int32').reshape(-1, 1, 2)
            scaled_holes.append(scaled_hole)
        return scaled_holes

    def _assertLevelDownsamples(self):
        level_downsamples = []
        dim_0 = self.wsi.level_dimensions[0]

        for downsample, dim in zip(self.wsi.level_downsamples, self.wsi.level_dimensions):
            estimated_downsample = (dim_0[0]/float(dim[0]), dim_0[1]/float(dim[1]))
            level_downsamples.append(estimated_downsample) if estimated_downsample != (downsample, downsample) else level_downsamples.append((downsample, downsample))

        return level_downsamples

    def process_contours(self, save_path, patch_level=0, patch_size=256, step_size=256, max_holes_to_remove=3,
                         **kwargs):
        save_path_hdf5 = os.path.join(save_path, str(self.name) + '.h5')
        print("Creating patches for: ", self.name, "...")
        elapsed = time.time()

        # 假设只有一个轮廓,并且所有孔洞都属于这个轮廓
        contour = self.contours_tissue[0]  # 直接获取唯一的轮廓
        contour_holes = self.holes_tissue  # 所有孔洞直接归属于这个轮廓

        n_holes = len(contour_holes)
        print(f"Total number of holes: {n_holes}")

        # 确保孔洞是正确的格式
        valid_holes = [hole for hole in contour_holes if len(hole) > 0 and isinstance(hole, (list, np.ndarray))]
        valid_holes = [np.array(hole, dtype=np.int32) for hole in valid_holes]

        # 检查最终有效孔洞的数量
        print(f"Remaining valid holes: {len(valid_holes)}")

        # 处理当前轮廓及其孔洞
        asset_dict, attr_dict = self.process_contour(contour, valid_holes, patch_level, save_path, patch_size,
                                                     step_size, **kwargs)

        # 如果生成了数据,则保存到 HDF5 文件中
        if len(asset_dict) > 0:
            save_hdf5(save_path_hdf5, asset_dict, attr_dict, mode='w')
        else:
            print("No data to save.")

        return self.hdf5_file

    def process_contour(self, cont, contour_holes, patch_level, save_path, patch_size=256, step_size=256,
                        contour_fn='four_pt', use_padding=True, top_left=None, bot_right=None, **kwargs):
        cont = np.array(cont, dtype='int32').reshape(-1, 1, 2)
        start_x, start_y, w, h = cv2.boundingRect(cont) if cont is not None else (
            0, 0, self.level_dim[patch_level][0], self.level_dim[patch_level][1])

        patch_downsample = (int(self.level_downsamples[patch_level][0]), int(self.level_downsamples[patch_level][1]))
        ref_patch_size = (patch_size * patch_downsample[0], patch_size * patch_downsample[1])

        img_w, img_h = self.level_dim[0]
        if use_padding:
            stop_y = start_y + h
            stop_x = start_x + w
        else:
            stop_y = min(start_y + h, img_h - ref_patch_size[1] + 1)
            stop_x = min(start_x + w, img_w - ref_patch_size[0] + 1)

        print("Bounding Box:", start_x, start_y, w, h)
        print("Contour Area:", cv2.contourArea(cont))

        if bot_right is not None:
            stop_y = min(bot_right[1], stop_y)
            stop_x = min(bot_right[0], stop_x)
        if top_left is not None:
            start_y = max(top_left[1], start_y)
            start_x = max(top_left[0], start_x)

        if bot_right is not None or top_left is not None:
            w, h = stop_x - start_x, stop_y - start_y
            if w <= 0 or h <= 0:
                print("Contour is not in specified ROI, skip")
                return {}, {}
            else:
                print("Adjusted Bounding Box:", start_x, start_y, w, h)

        if isinstance(contour_fn, str):
            if contour_fn == 'four_pt':
                cont_check_fn = isInContourV3_Easy(contour=cont, patch_size=ref_patch_size[0], center_shift=0.5)
            elif contour_fn == 'four_pt_hard':
                cont_check_fn = isInContourV3_Hard(contour=cont, patch_size=ref_patch_size[0], center_shift=0.5)
            elif contour_fn == 'center':
                cont_check_fn = isInContourV2(contour=cont, patch_size=ref_patch_size[0])
            elif contour_fn == 'basic':
                cont_check_fn = isInContourV1(contour=cont)
            else:
                raise NotImplementedError
        else:
            assert isinstance(contour_fn, Contour_Checking_fn)
            cont_check_fn = contour_fn

        step_size_x = step_size * patch_downsample[0]
        step_size_y = step_size * patch_downsample[1]

        x_range = np.arange(start_x, stop_x, step=step_size_x)
        y_range = np.arange(start_y, stop_y, step=step_size_y)
        x_coords, y_coords = np.meshgrid(x_range, y_range, indexing='ij')
        coord_candidates = np.array([x_coords.flatten(), y_coords.flatten()]).transpose()

        num_workers = mp.cpu_count()
        if num_workers > 4:
            num_workers = 4
        pool = mp.Pool(num_workers)

        iterable = [(coord, contour_holes, ref_patch_size[0], cont_check_fn) for coord in coord_candidates]
        results = pool.starmap(WholeSlideImage.process_coord_candidate, iterable)
        pool.close()
        results = np.array([result for result in results if result is not None])

        print('Extracted {} coordinates'.format(len(results)))

        if len(results) > 0:
            asset_dict = {'coords': results}

            attr = {'patch_size': patch_size,  # To be considered...
                    'patch_level': patch_level,
                    'downsample': self.level_downsamples[patch_level],
                    'downsampled_level_dim': tuple(np.array(self.level_dim[patch_level])),
                    'level_dim': self.level_dim[patch_level],
                    'name': self.name,
                    'save_path': save_path}

            attr_dict = {'coords': attr}
            return asset_dict, attr_dict

        else:
            return {}, {}

    @staticmethod
    def process_coord_candidate(coord, contour_holes, ref_patch_size, cont_check_fn):
        x, y = coord
        if WholeSlideImage.isInContours(cont_check_fn, (x, y), contour_holes, patch_size=ref_patch_size):
            return coord
        return None

    def visHeatmap(self, scores, coords, vis_level=-1,
                   top_left=None, bot_right=None,
                   patch_size=(256, 256),
                   blank_canvas=False, canvas_color=(220, 20, 50), alpha=0.4,
                   blur=False, overlap=0.0,
                   segment=True, use_holes=True,
                   convert_to_percentiles=False,
                   binarize=False, thresh=0.5,
                   max_size=None,
                   custom_downsample=1,
                   cmap='coolwarm'):

        """
        Args:
            scores (numpy array of float): Attention scores
            coords (numpy array of int, n_patches x 2): Corresponding coordinates (relative to lvl 0)
            vis_level (int): WSI pyramid level to visualize
            patch_size (tuple of int): Patch dimensions (relative to lvl 0)
            blank_canvas (bool): Whether to use a blank canvas to draw the heatmap (vs. using the original slide)
            canvas_color (tuple of uint8): Canvas color
            alpha (float [0, 1]): blending coefficient for overlaying heatmap onto original slide
            blur (bool): apply gaussian blurring
            overlap (float [0 1]): percentage of overlap between neighboring patches (only affect radius of blurring)
            segment (bool): whether to use tissue segmentation contour (must have already called self.segmentTissue such that
                            self.contours_tissue and self.holes_tissue are not None
            use_holes (bool): whether to also clip out detected tissue cavities (only in effect when segment == True)
            convert_to_percentiles (bool): whether to convert attention scores to percentiles
            binarize (bool): only display patches > threshold
            threshold (float): binarization threshold
            max_size (int): Maximum canvas size (clip if goes over)
            custom_downsample (int): additionally downscale the heatmap by specified factor
            cmap (str): name of matplotlib colormap to use
        """

        if vis_level < 0:
            vis_level = self.wsi.get_best_level_for_downsample(32)

        downsample = self.level_downsamples[vis_level]
        scale = [1/downsample[0], 1/downsample[1]] # Scaling from 0 to desired level

        if len(scores.shape) == 2:
            scores = scores.flatten()

        if binarize:
            if thresh < 0:
                threshold = 1.0 / len(scores)

            else:
                threshold =  thresh

        else:
            threshold = 0.0

        ##### calculate size of heatmap and filter coordinates/scores outside specified bbox region #####
        if top_left is not None and bot_right is not None:
            scores, coords = screen_coords(scores, coords, top_left, bot_right)
            coords = coords - top_left
            top_left = tuple(top_left)
            bot_right = tuple(bot_right)
            w, h = tuple((np.array(bot_right) * scale).astype(int) - (np.array(top_left) * scale).astype(int))
            region_size = (w, h)

        else:
            region_size = self.level_dim[vis_level]
            top_left = (0, 0)
            bot_right = self.level_dim[0]
            w, h = region_size

        patch_size  = np.ceil(np.array(patch_size) * np.array(scale)).astype(int)
        coords = np.ceil(coords * np.array(scale)).astype(int)

        print('\ncreating heatmap for: ')
        print('top_left: ', top_left, 'bot_right: ', bot_right)
        print('w: {}, h: {}'.format(w, h))
        print('scaled patch size: ', patch_size)

        ###### normalize filtered scores ######
        if convert_to_percentiles:
            scores = to_percentiles(scores)

        scores /= 100

        ######## calculate the heatmap of raw attention scores (before colormap)
        # by accumulating scores over overlapped regions ######

        # heatmap overlay: tracks attention score over each pixel of heatmap
        # overlay counter: tracks how many times attention score is accumulated over each pixel of heatmap
        overlay = np.empty(np.flip(region_size), dtype=float)
        counter = np.empty(np.flip(region_size), dtype=np.uint16)
        count = 0
        for idx in range(len(coords)):
            score = scores[idx]
            coord = coords[idx]
            if score >= threshold:
                if binarize:
                    score = 1.0
                    count += 1
            else:
                score = 0.0
            # accumulate attention
            overlay[coord[1]:coord[1]+patch_size[1], coord[0]:coord[0]+patch_size[0]] += score
            # accumulate counter
            counter[coord[1]:coord[1]+patch_size[1], coord[0]:coord[0]+patch_size[0]] += 1

        if binarize:
            print('\nbinarized tiles based on cutoff of {}'.format(threshold))
            print('identified {}/{} patches as positive'.format(count, len(coords)))

        # fetch attended region and average accumulated attention
        zero_mask = counter == 0

        if binarize:
            overlay[~zero_mask] = np.around(overlay[~zero_mask] / counter[~zero_mask])
        else:
            overlay[~zero_mask] = overlay[~zero_mask] / counter[~zero_mask]
        del counter
        if blur:
            overlay = cv2.GaussianBlur(overlay,tuple((patch_size * (1 - overlap)).astype(int) * 2 + 1), 0)

        if segment:
            tissue_mask = self.get_seg_mask(region_size, scale, use_holes=use_holes, offset=tuple(top_left))
            # return Image.fromarray(tissue_mask) # tissue mask

        if not blank_canvas:
            # downsample original image and use as canvas
            img = np.array(self.wsi.read_region(top_left, vis_level, region_size).convert("RGB"))
        else:
            # use blank canvas
            img = np.array(Image.new(size=region_size, mode="RGB", color=(255, 255, 255)))

        #return Image.fromarray(img) #raw image

        print('\ncomputing heatmap image')
        print('total of {} patches'.format(len(coords)))
        twenty_percent_chunk = max(1, int(len(coords) * 0.2))

        if isinstance(cmap, str):
            cmap = plt.get_cmap(cmap)

        for idx in range(len(coords)):
            if (idx + 1) % twenty_percent_chunk == 0:
                print('progress: {}/{}'.format(idx, len(coords)))

            score = scores[idx]
            coord = coords[idx]
            if score >= threshold:

                # attention block
                raw_block = overlay[coord[1]:coord[1]+patch_size[1], coord[0]:coord[0]+patch_size[0]]

                # image block (either blank canvas or orig image)
                img_block = img[coord[1]:coord[1]+patch_size[1], coord[0]:coord[0]+patch_size[0]].copy()

                # color block (cmap applied to attention block)
                color_block = (cmap(raw_block) * 255)[:,:,:3].astype(np.uint8)

                if segment:
                    # tissue mask block
                    mask_block = tissue_mask[coord[1]:coord[1]+patch_size[1], coord[0]:coord[0]+patch_size[0]]
                    # copy over only tissue masked portion of color block
                    img_block[mask_block] = color_block[mask_block]
                else:
                    # copy over entire color block
                    img_block = color_block

                # rewrite image block
                img[coord[1]:coord[1]+patch_size[1], coord[0]:coord[0]+patch_size[0]] = img_block.copy()

        #return Image.fromarray(img) #overlay
        print('Done')
        del overlay

        if blur:
            img = cv2.GaussianBlur(img,tuple((patch_size * (1 - overlap)).astype(int) * 2 + 1), 0)

        if alpha < 1.0:
            img = self.block_blending(img, vis_level, top_left, bot_right, alpha=alpha, blank_canvas=blank_canvas, block_size=1024)

        img = Image.fromarray(img)
        w, h = img.size

        if custom_downsample > 1:
            img = img.resize((int(w / custom_downsample), int(h / custom_downsample)))

        if max_size is not None and (w > max_size or h > max_size):
            resizeFactor = max_size / w if w > h else max_size / h
            img = img.resize((int(w * resizeFactor), int(h * resizeFactor)))

        return img


    def block_blending(self, img, vis_level, top_left, bot_right, alpha=0.5, blank_canvas=False, block_size=1024):
        print('\ncomputing blend')
        downsample = self.level_downsamples[vis_level]
        w = img.shape[1]
        h = img.shape[0]
        block_size_x = min(block_size, w)
        block_size_y = min(block_size, h)
        print('using block size: {} x {}'.format(block_size_x, block_size_y))

        shift = top_left # amount shifted w.r.t. (0,0)
        for x_start in range(top_left[0], bot_right[0], block_size_x * int(downsample[0])):
            for y_start in range(top_left[1], bot_right[1], block_size_y * int(downsample[1])):
                #print(x_start, y_start)

                # 1. convert wsi coordinates to image coordinates via shift and scale
                x_start_img = int((x_start - shift[0]) / int(downsample[0]))
                y_start_img = int((y_start - shift[1]) / int(downsample[1]))

                # 2. compute end points of blend tile, careful not to go over the edge of the image
                y_end_img = min(h, y_start_img + block_size_y)
                x_end_img = min(w, x_start_img + block_size_x)

                if y_end_img == y_start_img or x_end_img == x_start_img:
                    continue
                #print('start_coord: {} end_coord: {}'.format((x_start_img, y_start_img), (x_end_img, y_end_img)))

                # 3. fetch blend block and size
                blend_block = img[y_start_img:y_end_img, x_start_img:x_end_img]
                blend_block_size = (x_end_img - x_start_img, y_end_img - y_start_img)

                if not blank_canvas:
                    # 4. read actual wsi block as canvas block
                    pt = (x_start, y_start)
                    canvas = np.array(self.wsi.read_region(pt, vis_level, blend_block_size).convert("RGB"))
                else:
                    # 4. OR create blank canvas block
                    canvas = np.array(Image.new(size=blend_block_size, mode="RGB", color=(255, 255, 255)))

                # 5. blend color block and canvas block
                img[y_start_img:y_end_img, x_start_img:x_end_img] = cv2.addWeighted(blend_block, alpha, canvas, 1 - alpha, 0, canvas)
        return img

    def get_seg_mask(self, region_size, scale, use_holes=False, offset=(0, 0)):
        print('\ncomputing foreground tissue mask')
        tissue_mask = np.empty(np.flip(region_size), dtype=np.uint8)#np.full(np.flip(region_size), 0).astype(np.uint8)
        contours_tissue = self.scaleContourDim(self.contours_tissue, scale)
        offset = tuple((np.array(offset) * np.array(scale) * -1).astype(np.int32))

        contours_holes = self.scaleHolesDim(self.holes_tissue, scale)
        contours_tissue, contours_holes = zip(*sorted(zip(contours_tissue, contours_holes), key=lambda x: cv2.contourArea(x[0]), reverse=True))
        for idx in range(len(contours_tissue)):
            cv2.drawContours(image=tissue_mask, contours=contours_tissue, contourIdx=idx, color=(1), offset=offset, thickness=-1)

            if use_holes:
                cv2.drawContours(image=tissue_mask, contours=contours_holes[idx], contourIdx=-1, color=(0), offset=offset, thickness=-1)
            # contours_holes = self._scaleContourDim(self.holes_tissue, scale, holes=True, area_thresh=area_thresh)

        tissue_mask = tissue_mask.astype(bool)
        print('detected {}/{} of region as tissue'.format(tissue_mask.sum(), tissue_mask.size))
        return tissue_mask

标签:CLAM,level,区域分割,self,holes,指定,patch,params,size
From: https://blog.csdn.net/bookye_/article/details/141065299

相关文章

  • 如何从一堆文件中找到指定的日志段?
    背景这个问题主要考察了Linux命令的使用,find命令和grep命令,在linux系统中,这两个命令用的比较广泛,工作中常常可以用来查找到指定的日志内容。今天我们就来学一下两个命令,然后回答下这个问题吧。命令介绍1、find命令find常用来在Linux系统中查找文件或者目录,查找到的文件名会......
  • Unable to load DLL ‘sapnwrfc‘ or one of its dependencies: 找不到指定的模块。 (
    将webApi发布到IIS报错:UnabletoloadDLL'sapnwrfc'oroneofitsdependencies:找不到指定的模块。(0x8007007E)首先本人用的是.net6请对号入座。解决方案:1,请确保SAPNetWeaverRFC库7.50SDK已经放在项目根目录下了附上下载地址:https://download.csdn.......
  • PHP处理图片成指定大小的缩略图--简单封装的类
    <?PHP//图像处理类classImage{private$file;//图片地址private$width;//图片长度private$height;//图片长度private$type;//图片类型private$img;//原图的资源句柄private$new;//新图的资源句柄//构造方法,......
  • 编写一个函数接受这些参数:内含int类型元素的数组名,数组的大小和一个代表选取次数的值
    /编写一个函数接受这些参数:内含int类型元素的数组名,数组的大小和一个代表选取次数的值。该函数从数组中随机指定数量的元素,并打印他们。每个元素只能选择一次(模拟抽奖数字或挑选陪审团成员)。另外,如果你的实现有time()或类似的函数,可以在srand()中使用这个函数的输出来初始化......
  • elasticsearch: 指定索引数据的保存目录
    一,查看节点的fs得到索引数据的保存目录说明:修改索引数据的保存目录,通常是因为要把数据单独保存到服务器专用的数据盘,方便扩展\管理\备份等访问:http://localhost:9200/_nodes/stats/fs 也可以从命令行访问:[root@lhdpcelasticsearch]#curl-XGET"localhost:9200/_no......
  • Git合并之————指定提交记录合并
    应用场景在测试环境提交了多个功能代码,其中一个功能需要提前上线如图所示,红框部分为我本次需要上线的功能提交记录代码,绿框部分为我已选择上线成功,可以看到红框与绿框直接的内容并没有被带入master分支.这里我以IDEA为例.首先,切换到master分支,也就是你需要......
  • nginx返回指定数据
    nginx返回指定数据返回json###配置指定路径返回相应json信息location~^/get_info{default_typeapplication/json;return200'{"status":"success","result":"helloworld!"}';}注意:当开发某个接口固定是一个返回值时,可以用此方法返回。节省后端处理过程......
  • 《最新出炉》系列小成篇-Python+Playwright自动化测试-66 - 等待元素至指定状态(出现
    1.简介在我们日常工作中进行UI自动化测试时,保证测试的稳定性至关重要。其中一个关键方面是正确地定位和操作网页中的元素。在网页中,元素可能处于不同的状态,有些可能在页面加载完成之前不在DOM中,需要某些操作后才会出现,而其他元素可能一直存在于DOM中,但最初处于隐藏状态,需要通过操......
  • new_d_array()函数接受一个int类型的参数和double类型的参数。该函数返回一个指针,指向
    /*下面是使用变参函数的一段程序:include<stdio.h>include<string.h>incude<stdarg.h>voidshow_array(constdoublear[],intn);double*new_d_array(intN,...);intmain(void){doublep1;doublep2;p1=new_d_array(5,1.2,2.3,3.4,4.5,5.6);p2=new_d_ar......
  • Linux杀毒软件clamav1.3.1离线安装及杀毒
    Linux杀毒软件clamav1.3.1离线安装及杀毒wgethttps://www.clamav.net/downloads/production/clamav-1.3.1.linux.x86_64.rpmrpm-ivh--prefix=/usr/local/clamavclamav-1.3.1.linux.x86_64.rpmgroupaddclamavuseradd-gclamavclamavmkdir-p/usr/local/clamav/logsmkdir-......