首页 > 其他分享 >基于WOA优化的CNN-GRU的时间序列回归预测matlab仿真

基于WOA优化的CNN-GRU的时间序列回归预测matlab仿真

时间:2024-08-08 16:09:22浏览次数:18  
标签:rand GRU WOA CNN xwoa matlab 序列 优化

1.算法运行效果图预览

(完整程序运行后无水印)

 

 

 

2.算法运行软件版本

matlab2022a

 

3.部分核心程序

(完整版代码包含详细中文注释和操作步骤视频)

 

%调整参数
    c1 = 2-t*((1)/300); 
    c2 =-1+t*((-1)/300);
    %位置更新
    for i=1:Num
        r1         = rand();
        r2         = rand();
        K1         = 2*c1*r1-c1;  
        K2         = 2*r2;             
        l          =(c2-1)*rand + 1;  
        rand_flag  = rand();   
 
        for j=1:D
            if rand_flag<0.5   
               if abs(K1)>=1
                  RLidx    = floor(Num*rand()+1);
                  X_rand   = xwoa(RLidx, :);
                  D_X_rand = abs(K2*X_rand(j)-xwoa(i,j)); 
                  xwoa(i,j)= X_rand(j)-K1*D_X_rand;     
               else
                  D_Leader = abs(K2*woa_idx(j)-xwoa(i,j)); 
                  xwoa(i,j)= woa_idx(j)-K1*D_Leader;    
               end
            else
                distLeader = abs(woa_idx(j)-xwoa(i,j));
                xwoa(i,j)  = distLeader*exp(2*l).*cos(l.*2*pi)+woa_idx(j);
            end
            %目标函数更新
            if xwoa(i,j)>=tmps(j,2) 
               xwoa(i,j)=tmps(j,2);
            end
            if xwoa(i,j)<=tmps(j,1) 
               xwoa(i,j)=tmps(j,1);
            end
        end
        gb12(i)= func_obj(xwoa(i,:));
    end
end
 
LR              = woa_idx(1);
%训练
[Net,INFO] =trainNetwork(Nsp_train2, NTsp_train, layers, options);
IT  =[1:length(INFO.TrainingLoss)];
Accuracy=INFO.TrainingRMSE;
 
figure;
plot(IT(1:1:end),Accuracy(1:1:end));
xlabel('epoch');
ylabel('RMSE');
%数据预测
Dpre1 = predict(Net, Nsp_train2);
Dpre2 = predict(Net, Nsp_test2);
 
%归一化还原
T_sim1=Dpre1*Vmax2;
T_sim2=Dpre2*Vmax2;
 
 
%网络结构
analyzeNetwork(Net)
 
 
figure
subplot(211);
plot(1: Num1, Tat_train,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num1, T_sim1,'g',...
    'LineWidth',2,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
 
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
grid on
 
subplot(212);
plot(1: Num1, Tat_train-T_sim1','-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
 
xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);
figure
subplot(211);
plot(1: Num2, Tat_test,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num2, T_sim2,'g',...
    'LineWidth',2,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
legend('真实值', '预测值')
xlabel('测试样本')
ylabel('测试结果')
grid on
subplot(212);
plot(1: Num2, Tat_test-T_sim2','-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
 
xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);
 
 
save R2.mat Num2 Tat_test IT T_sim2 Accuracy
 
158

  

 

4.算法理论概述

        时间序列回归预测是数据分析的重要领域,旨在根据历史数据预测未来时刻的数值。近年来,深度学习模型如卷积神经网络(Convolutional Neural Network, CNN)、GRU在时间序列预测中展现出显著优势。然而,模型参数的有效设置对预测性能至关重要。鲸鱼优化(WOA)作为一种高效的全局优化算法,被引入用于优化深度学习模型的超参数。

 

4.1卷积神经网络(CNN)在时间序列中的应用

       在时间序列数据中,CNN用于提取局部特征和模式。对于一个长度为T的时间序列数据X = [x_1, x_2, ..., x_T],通过卷积层可以生成一组特征映射:

 

 

 

       CNN通过多个卷积层和池化层的堆叠来提取输入数据的特征。每个卷积层都包含多个卷积核,用于捕捉不同的特征。池化层则用于降低数据的维度,减少计算量并增强模型的鲁棒性。

 

4.2 GRU网络

        GRU(Gated Recurrent Unit)是一种先进的循环神经网络(RNN)变体,专门设计用于处理序列数据,如文本、语音、时间序列等。GRU旨在解决传统RNN在处理长序列时可能出现的梯度消失或梯度爆炸问题,并简化LSTM(Long Short-Term Memory)网络的结构,同时保持其捕获长期依赖关系的能力。

 

       GRU包含一个核心循环单元,该单元在每个时间步t处理输入数据xt​并更新隐藏状态ht​。其核心创新在于引入了两个门控机制:更新门(Update Gate)和重置门(Reset Gate)。

 

4.3 WOA优化算法

 

       WOA即Whale Optimization Algorithm(鲸鱼优化算法),是一种受自然界鲸鱼捕食行为启发的生物启发式优化算法,由Eslam Mohamed于2016年提出,常用于解决各种连续优化问题,包括函数优化、机器学习参数调整、工程设计等领域中的复杂优化任务。鲸鱼优化算法模拟了虎鲸的两种主要觅食策略: Bubble-net attacking 和 Spiral updating 过程。

 

标签:rand,GRU,WOA,CNN,xwoa,matlab,序列,优化
From: https://www.cnblogs.com/matlabworld/p/18349109

相关文章