首页 > 其他分享 >CompletableFuture实践总结

CompletableFuture实践总结

时间:2024-08-07 10:50:26浏览次数:8  
标签:总结 异步 return 处理 实践 CompletableFuture 操作 supplyAsync

第1章:引言

在Java传统的Future模式里,咱们都知道,一旦开始了一个异步操作,就只能等它结束,无法知道执行情况,也不能手动完成或者取消。而CompletableFuture呢,就像它的名字一样,是可以"完全控制"的Future。它提供了更多的控制,比如可以手动完成,可以处理异常,还可以把多个Future组合起来,进行更复杂的异步逻辑处理。

对于现代Java程序员来说,掌握CompletableFuture是必不可少的。无论是提高程序的响应性能,还是编写更加清晰、更具可读性的代码,它都能大显身手。

第2章:基本概念解读

那么,CompletableFuture到底是什么呢?简单来说,它是一种异步编程工具,可以帮助咱们在未来的某个时刻完成一个计算结果。与Future最大的不同是,它可以被显式地完成,意味着咱们可以在任何时候设置它的值。

让我们来看一个简单的例子。假设小鱼干要从网上查询某个产品的价格,这是一个耗时的操作,使用CompletableFuture,咱们就可以异步地完成这个任务:

import java.util.concurrent.CompletableFuture;

public class CompletableFutureDemo {
    public static void main(String[] args) {
        // 创建一个CompletableFuture实例
        CompletableFuture<String> futurePrice = CompletableFuture.supplyAsync(() -> {
            // 模拟耗时操作,比如调用外部API
            simulateDelay();
            return "100元";
        });

        // 在这里,咱们可以做一些其他的事情,不必等待价格查询的结果
        doSomethingElse();

        // 当结果准备好后,获取它
        String price = futurePrice.join();
        System.out.println("价格是:" + price);
    }

    private static void simulateDelay() {
        try {
            Thread.sleep(1000); // 模拟1秒的延迟
        } catch (InterruptedException e) {
            Thread.currentThread().interrupt();
        }
    }

    private static void doSomethingElse() {
        // 做一些其他的事情
        System.out.println("小鱼干在做其他的事情...");
    }
}

在这个例子中,supplyAsync方法创建了一个异步操作,模拟了一个耗时的价格查询过程。在查询价格的同时,主线程可以继续执行其他任务,比如doSomethingElse方法里的内容。当价格查询完成后,可以使用join方法来获取结果。这样的处理方式,让整个程序的执行效率大大提升,而且代码也更简洁明了。

CompletableFuture的美在于,它提供了一种新的编程范式,让咱们能够以声明式的方式描述复杂的异步逻辑。从上面的例子可以看出,CompletableFuture不仅让代码更加简洁,还让逻辑更加清晰,易于理解和维护。

第3章:创建CompletableFuture

1. 使用supplyAsync

最常见的创建方式是使用CompletableFuture.supplyAsync()。这个方法需要一个Supplier函数接口,通常用于执行异步计算。来看看小鱼干怎么用:

CompletableFuture<String> future = CompletableFuture.supplyAsync(() -> {
    // 模拟耗时的计算
    simulateTask("数据加载中");
    return "结果";
});

这个例子中,simulateTask模拟了一个耗时操作,比如从数据库加载数据。使用supplyAsync,咱们就能在另一个线程中执行这个任务,而主线程可以继续做其他事情。

2. 使用runAsync

如果咱们不关心异步任务的结果,只想执行一个异步操作,那就可以用runAsync。它接受一个Runnable函数接口,不返回任何结果:

CompletableFuture<Void> future = CompletableFuture.runAsync(() -> {
    simulateTask("正在执行一些处理");
});

在这个例子里,simulateTask只是执行了一些操作,比如记录日志或者发送通知,但不返回任何内容。

3. 手动完成

有时候,咱们可能需要手动完成一个Future。比如,基于某些条件判断,决定是否提前返回结果。这时候可以用complete方法:

CompletableFuture<String> manualFuture = new CompletableFuture<>();
// 在某些条件下手动完成Future
if (checkCondition()) {
    manualFuture.complete("手动结果");
}

如果checkCondition返回true,那么这个Future就会被立即完成,否则它将保持未完成状态。

4. 组合使用

CompletableFuture真正的魅力在于它的组合能力。假设小鱼干有两个独立的异步任务,咱们可以这样组合它们:

CompletableFuture<String> future1 = CompletableFuture.supplyAsync(() -> {
    simulateTask("加载用户数据");
    return "用户小鱼干";
});

CompletableFuture<String> future2 = CompletableFuture.supplyAsync(() -> {
    simulateTask("加载配置信息");
    return "配置信息";
});

// 组合两个future,等待它们都完成
CompletableFuture<String> combinedFuture = future1.thenCombine(future2, (user, config) -> {
    return "处理结果: " + user + "," + config;
});


在这个例子中,thenCombine用于组合future1和future2的结果。只有当这两个Future都完成时,才会调用thenCombine里的函数。

第4章:异步操作和链式调用

异步操作的力量

异步操作是指在一个线程中启动一个任务,让它在另一个线程中运行,从而不阻塞当前线程的执行。这在处理耗时任务时特别有用。举个例子,假设咱们要查询数据库,然后处理查询结果。如果同步执行,整个程序都得等着数据库查询完成,这就浪费了宝贵的时间。但如果用CompletableFuture实现异步,就可以在查询数据库的同时做其他事情。

链式调用的魅力

链式调用则是指一系列操作依次执行,前一个操作的结果作为下一个操作的输入。CompletableFuture支持多种链式调用方法,比如thenApply, thenAccept和thenRun。

thenApply用于处理和转换CompletableFuture的结果。
thenAccept用于消费CompletableFuture的结果,不返回新的CompletableFuture。
thenRun则不关心前一个任务的结果,只是在前一个任务执行完后,执行一些后续操作。
例子:

CompletableFuture<String> future = CompletableFuture.supplyAsync(() -> {
    simulateTask("查询数据库");
    return "查询结果";
});

future.thenApply(result -> {
    // 对结果进行处理
    return "处理后的结果:" + result;
}).thenAccept(processedResult -> {
    // 消费处理后的结果
    System.out.println("最终结果:" + processedResult);
}).thenRun(() -> {
    // 执行一些不需要前一个结果的操作
    System.out.println("所有操作完成");
});


在这个例子里,supplyAsync启动了一个异步任务来查询数据库。然后用thenApply处理查询结果,用thenAccept消费处理后的结果,最后用thenRun标记所有操作完成。

通过这种方式,咱们可以构建出复杂的异步逻辑,而代码却依然保持清晰和易于管理。这就是CompletableFuture的魅力所在。

第5章:异常处理

基本异常处理

在CompletableFuture的世界里,如果异步操作失败了,异常会被捕获并存储在Future对象中。咱们可以使用exceptionally方法来处理这些异常。这个方法会返回一个新的CompletableFuture,它会在原来的Future抛出异常时执行。

来看个例子:

CompletableFuture<String> future = CompletableFuture.supplyAsync(() -> {
    if (new Random().nextBoolean()) {
        throw new RuntimeException("出错啦!");
    }
    return "正常结果";
}).exceptionally(ex -> {
    return "错误的回退结果:" + ex.getMessage();
});

future.thenAccept(System.out::println);

这里,创建了一个可能会失败的异步操作。如果抛出异常,exceptionally方法就会被调用,返回一个包含错误信息的回退结果。

细粒度的异常处理

有时候,咱们可能需要更细粒度的控制,比如只处理特定类型的异常,或者在异常发生时还想继续其他操作。这时候,可以用handle方法。它可以同时处理正常的结果和异常情况。

CompletableFuture<String> future = CompletableFuture.supplyAsync(() -> {
    if (new Random().nextBoolean()) {
        throw new RuntimeException("出错啦!");
    }
    return "正常结果";
}).handle((result, ex) -> {
    if (ex != null) {
        return "处理异常:" + ex.getMessage();
    }
    return "处理结果:" + result;
});

future.thenAccept(System.out::println);

在这个例子中,无论异步操作是成功还是失败,handle方法都会被调用。如果有异常,它会处理异常;如果没有,就处理正常结果。

管道式异常处理

CompletableFuture还允许咱们创建一个异常处理的“管道”,这样就可以把多个异步操作链接起来,并在链的任意位置处理异常。

CompletableFuture<String> future = CompletableFuture.supplyAsync(() -> {
    // 第一个异步操作
    return "第一步结果";
}).thenApply(result -> {
    // 第二个异步操作,可能会出错
    throw new RuntimeException("第二步出错啦!");
}).exceptionally(ex -> {
    // 处理异常
    return "在第二步捕获异常:" + ex.getMessage();
}).thenApply(result -> {
    // 第三个异步操作
    return "第三步使用结果:" + result;
});

future.thenAccept(System.out::println);

在这个例子中,创建了一个包含三个步骤的异步操作链。如果第二步出错,异常会被捕获并处理,然后处理结果被传递到第三步。

第6章:组合与依赖

组合多个Future

最常用的方法之一是thenCombine。这个方法允许你组合两个独立的CompletableFuture,并且当它们都完成时,可以对它们的结果进行一些操作。

来看个例子:

CompletableFuture<String> future1 = CompletableFuture.supplyAsync(() -> {
    simulateTask("加载用户信息");
    return "用户";
});

CompletableFuture<String> future2 = CompletableFuture.supplyAsync(() -> {
    simulateTask("加载订单数据");
    return "订单123";
});

CompletableFuture<String> combinedFuture = future1.thenCombine(future2, (userInfo, orderInfo) -> {
    return "合并结果:" + userInfo + "," + orderInfo;
});

combinedFuture.thenAccept(System.out::println);

在这个例子中,future1和future2代表两个独立的异步操作。只有当两者都完成时,thenCombine里面的函数才会执行,并且合并它们的结果。

依赖关系的处理

如果你的一个异步操作依赖于另一个异步操作的结果,那么可以使用thenCompose方法。这个方法允许你在一个Future完成后,以其结果为基础启动另一个异步操作。

CompletableFuture<String> masterFuture = CompletableFuture.supplyAsync(() -> {
    simulateTask("获取主数据");
    return "主数据结果";
});

CompletableFuture<String> dependentFuture = masterFuture.thenCompose(result -> {
    return CompletableFuture.supplyAsync(() -> {
        simulateTask("处理依赖于" + result + "的数据");
        return "处理后的数据";
    });
});

dependentFuture.thenAccept(System.out::println);

这个例子中,dependentFuture的执行依赖于masterFuture的结果。

处理多个Future

有时候,咱们可能有多个异步操作,需要等所有操作都完成后再进行下一步。这时候,可以使用CompletableFuture.allOf。

CompletableFuture<String> future1 = CompletableFuture.supplyAsync(() -> {
    simulateTask("任务一");
    return "结果一";
});

CompletableFuture<String> future2 = CompletableFuture.supplyAsync(() -> {
    simulateTask("任务二");
    return "结果二";
});

CompletableFuture<Void> allFutures = CompletableFuture.allOf(future1, future2);

allFutures.thenRun(() -> {
    System.out.println("所有任务完成");
});

allOf会等待所有提供的Futures完成,然后执行后续操作。

第7章:最佳实践

1. 明智地选择异步任务执行方式

CompletableFuture提供了多种执行异步任务的方法,比如runAsync和supplyAsync。默认情况下,它们使用公共的ForkJoinPool,但在某些场景下,你可能想要使用自定义的线程池来更好地控制资源。

ExecutorService customExecutor = Executors.newFixedThreadPool(10);
CompletableFuture<String> future = CompletableFuture.supplyAsync(() -> {
    return "使用自定义线程池";
}, customExecutor);

这样做可以让你更好地管理线程资源,尤其是在处理大量异步任务时。

2. 谨慎处理阻塞操作

如果你的CompletableFuture链中包含阻塞调用,如数据库操作或文件I/O,最好是将这些操作放在独立的线程池中,避免阻塞ForkJoinPool中的线程。

ExecutorService dbExecutor = Executors.newCachedThreadPool();
CompletableFuture<Void> future = CompletableFuture.runAsync(() -> {
    // 这里是阻塞的数据库操作
    simulateTask("数据库操作");
}, dbExecutor);

这样可以防止长时间的阻塞操作占用过多的计算资源,影响整体性能。

3. 组合异步操作时的错误处理

当你组合多个CompletableFuture时,记得对每一个Future都进行错误处理。这样可以避免一个未捕获的异常破坏整个操作链。

CompletableFuture<String> future1 = CompletableFuture.supplyAsync(() -> "任务1").exceptionally(ex -> "默认值1");
CompletableFuture<String> future2 = CompletableFuture.supplyAsync(() -> "任务2").exceptionally(ex -> "默认值2");

CompletableFuture<String> combinedFuture = future1.thenCombine(future2, (result1, result2) -> result1 + " 和 " + result2);

这样做确保了即使其中一个操作失败,整个链也可以继续执行。

4. 避免过多的链式调用

虽然链式调用是CompletableFuture的一个强大特性,但过度使用可能会导致代码难以理解和维护。建议把复杂的逻辑分解成多个方法或类。

CompletableFuture<String> future = CompletableFuture.supplyAsync(() -> "原始数据")
    .thenApply(this::step1)
    .thenApply(this::step2)
    .thenApply(this::step3);

// 将每个步骤的逻辑封装在不同的方法中
private String step1(String data) {
    return "处理1:" + data;
}

private String step2(String data) {
    return "处理2:" + data;
}

private String step3(String data) {
    return "处理3:" + data;
}

第8章:总结

  1. 异步编程的强大工具:CompletableFuture为Java异步编程提供了强大的支持,让处理并发任务变得更简单、更灵活。
  2. 简化复杂逻辑:通过链式调用和组合多个异步任务,CompletableFuture能够帮助咱们以清晰的方式处理复杂的业务逻辑。
  3. 异常处理的优雅方式:CompletableFuture提供了一套完整的异常处理框架,让咱们能够更好地控制和管理异步代码中的错误情况。

参考链接:

https://segmentfault.com/a/1190000044543793

标签:总结,异步,return,处理,实践,CompletableFuture,操作,supplyAsync
From: https://www.cnblogs.com/yzx8/p/18346552

相关文章

  • USB基础知识总结
    USB基础知识总结USB基本概念介绍USB(UniversalSerialBus,通用串行总线)是1995年英特尔和微软等公司联合倡导发起的一种新的**PC串行通信协议。它基于通用连接技术,实现外设的简单快速连接,达到方便用户、降低成本、扩展PC连接外设范围的目的。其最大特点是支持热插拔和即插......
  • Python 内联函数最佳实践
    如果我有一个可以用一行表示的python函数,那么以下哪一个选项通常被认为最适合可读性和一般最佳实践?或者还有其他更好的选择吗?选项2对我来说似乎是最好的,但我是初学者,所以我不想假设任何事情。我尝试过搜索PEP8、StackOverflow和一两个博客,但我找不到任何关于python的明......
  • JMeter 性能测试工具入门与实践
    简介ApacheJMeter是一款流行的开源性能测试工具,广泛用于测试Web应用和各种服务的性能。它支持多种协议和技术,如HTTP,HTTPS,SOAP,REST,JMS等。JMeter不仅可以用于性能测试,还可以用于负载测试、压力测试和功能测试。安装与配置安装JMeter访问ApacheJMeter的官方网......
  • 【JVM基础15】——实践-JVM调优的参数有哪些?
    目录1-引言:2-⭐核心:2-1设置堆空间大小2-2虚拟机栈的设置2-3年轻代Eden区和两个Survivor区的大小比例2-4年轻代晋升老年代阈值2-5设置垃圾回收器3-小结:3-1JVM调优的参数有哪些?1-引言:对于JVM调优,主要就是调整年轻代、老年代、元空间的内存空间大小......
  • Tensorflow Serving部署及客户端访问编程实践
    昨天我们实现了Tensorflow.js的花卉识别程序,它的优点是不需要服务器支持,在客户端就可以完成花卉识别,使用非常方便,但也存在一些缺点。对于很多深度学习的应用来说,由于其训练模型复杂、计算量大,所以,一般来说,仍然需要服务器支持。下面仍然以花卉识别为例,介绍如何部署Tensorflow......
  • ARC181总结
    ARC181总结ARC还是太难了A标签:有脑子......
  • 代码随想录算法训练营第七天|454.四数相加II,383. 赎金信,15. 三数之和,18. 四数之和,总结
    力扣题部分:454.四数相加II题目链接:.-力扣(LeetCode) ​​​​​思路(map哈希表):    将数组分为两组分别用双重for循环遍历。第一组将来自不同数组的两个数之和(记为sum1)作为map的key,两个数之和出现的次数作为map的value,第二组通过在map查询来自不同数组的两......
  • 基于tcp,html,数据库的在线信息查询系统项目总结
    1.项目背景在线信息查询系统是一种可用于检索和展示各种信息的计算机程序或平台。主要特点包括:用户接口:通常提供友好的界面,用户可以方便地输入查询条件。数据存储:系统往往连接到数据库,存储大量信息,以供查询和分析。搜索功能:支持关键词搜索、筛选和分类功能,帮助用户快速找到......
  • 八月总结复习
    20240806kmpmanacherac自动机20240806线性求逆元假设我们求取\(n\)关于质数\(p\)的逆元,即求取\(n^{-1}\)我们设\(a=\lfloorp/n\rfloor,b=p\modn\)。则有$a*n+b\equiv0(mod\p)$移项可得:\[a*b\equiv-b(mod\p)\]\[-a/b\equivn^{-1}(mod\p)\]即:\[n^{-1}\e......
  • 【NumPy 入门:常用函数与方法总结】
    文章目录前言1、np.array()函数2、np.arange函数(用于生成数值序列的函数)3、np.linspace函数(用于生成数值序列的函数)4、ndarray.dtype和ndarray.dtype.name属性5、矩阵乘积6、ravel方法、T和flat属性7、np.vstack和np.hstack函数8、column_stack函数9、np.r_和......