首页 > 其他分享 >K8s大模型算力调度策略的深度解析

K8s大模型算力调度策略的深度解析

时间:2024-07-30 17:24:40浏览次数:10  
标签:node 解析 调度 Pod K8s 算力 节点 资源

随着大数据和人工智能技术的飞速发展,Kubernetes(简称K8s)作为容器编排的领军者,在支撑大规模模型训练和推理方面扮演着越来越重要的角色。在大模型算力的调度过程中,如何高效、合理地分配和管理资源成为了一个亟待解决的问题。本文将深入探讨K8s在大模型算力调度中的策略与实践。

目录

一、K8s调度器基础

节点预选(Predicate)

节点优先级排序(Priority)

节点选定(Select)

二、大模型算力调度策略

1. 自动调度

2. 定向调度

3. 亲和性调度

4. 污点(容忍)调度

5. 调度实现

三、资源管理与优化

可压缩资源 vs 不可压缩资源

QoS模型

四、高级调度策略与未来展望

结论


一、K8s调度器基础

在K8s集群中,Pod是资源调度的基本单位。Pod的调度过程由Scheduler组件负责,它根据一系列算法和规则,为新的Pod找到合适的Node节点运行。这一过程大致可以分为三个阶段:节点预选(Predicate)、节点优先级排序(Priority)和节点选定(Select)。

节点预选(Predicate)

节点预选阶段主要基于一系列预选规则(Predicates)对集群中的每个节点进行检查,排除那些不满足Pod运行基本条件的节点。这些条件包括但不限于节点的内存大小、CPU资源、端口占用等。

节点优先级排序(Priority)

通过预选规则筛选出的节点,将进入优先级排序阶段。这一阶段使用优先级算法(Priorities)为每个节点打分,分数越高表示该节点越适合运行当前的Pod。

节点选定(Select)

最后,调度器从优先级排序结果中挑选出分数最高的节点作为Pod的最终运行节点。如果有多个节点得分相同,则可能进行随机选择。

二、大模型算力调度策略

针对大模型训练和推理的需求,K8s提供了多种调度策略,以更好地满足高性能计算场景下的资源调度需求。

1. 自动调度

默认情况下,K8s采用自动调度策略,由Scheduler组件根据预设的算法和规则自动为Pod选择节点。这种策略适用于大多数通用场景,但在大模型计算中可能不够灵活。

2. 定向调度

定向调度允许用户通过指定NodeName或NodeSelector来明确指定Pod运行的节点。这种策略适用于特定节点具有特殊硬件或软件配置的场景,如GPU加速节点。

3. 亲和性调度

亲和性调度(NodeAffinity、PodAffinity、PodAntiAffinity)提供了一种更灵活的调度方式,允许用户根据节点或Pod的标签(Label)和选择器(Selector)来定义调度规则。例如,可以将具有相同计算需求的Pod调度到同一节点上,以提高数据局部性和减少网络开销。

4. 污点(容忍)调度

污点(Taints)和容忍(Toleration)机制允许节点声明自己具有某些“污点”,只有能够容忍这些污点的Pod才能被调度到该节点上。这种机制常用于隔离特定类型的工作负载,或确保某些资源仅被特定类型的Pod使用。

5. 调度实现

在Kubernetes中,调度策略通常是通过编写自定义的调度器或者利用现有的调度框架进行扩展来实现的。下面我将提供一个简化的例子,演示如何编写一个简单的自定义调度器策略,该策略将Pod调度到具有特定标签的节点上。

这个例子不会是一个完整的调度器实现,而是展示了如何定义一个调度策略的核心逻辑。在实际应用中,你需要将这个逻辑集成到Kubernetes的调度器框架中。

# 假设这是自定义调度策略的一部分  
def schedule(pod, nodes):  
    # 假设pod有一个特定的标签选择器,要求节点必须有"disktype=ssd"的标签  
    required_node_label = "disktype=ssd"  
      
    # 遍历所有节点,找到符合标签要求的节点  
    suitable_nodes = []  
    for node in nodes:  
        if required_node_label in node.labels:  
            suitable_nodes.append(node)  
      
    # 如果没有找到合适的节点,返回None  
    if not suitable_nodes:  
        return None  
      
    # 如果有多个合适的节点,这里简单选择第一个节点作为调度目标  
    # 在实际应用中,你可能需要更复杂的逻辑来选择最佳的节点  
    chosen_node = suitable_nodes[0]  
      
    return chosen_node  
  
# 假设的Pod和节点对象,仅用于示例  
class Pod:  
    def __init__(self, labels):  
        self.labels = labels  
  
class Node:  
    def __init__(self, name, labels):  
        self.name = name  
        self.labels = labels  
  
# 创建一些示例节点  
nodes = [  
    Node("node1", {"disktype": "ssd", "region": "us-west"}),  
    Node("node2", {"disktype": "hdd", "region": "us-east"}),  
    Node("node3", {"disktype": "ssd", "region": "us-west"})  
]  
  
# 创建一个需要SSD磁盘的Pod  
pod = Pod({"app": "my-app", "disktype": "ssd"})  
  
# 调用调度函数  
chosen_node = schedule(pod, nodes)  
if chosen_node:  
    print(f"Pod scheduled to node: {chosen_node.name}")  
else:  
    print("No suitable node found for scheduling the Pod.")

在这个例子中,schedule 函数接受一个Pod和一组节点作为输入,并尝试找到符合Pod标签选择器要求的节点。如果找到多个合适的节点,它简单地选择第一个节点作为调度目标。在实际应用中,你可能需要实现更复杂的逻辑来选择最佳的节点,例如考虑节点的负载、资源利用率、网络拓扑等因素。 

三、资源管理与优化

在大模型算力调度中,资源的有效管理和优化至关重要。K8s通过将资源划分为可压缩资源和不可压缩资源,并引入QoS(服务质量)模型,来确保资源的合理分配和使用。

可压缩资源 vs 不可压缩资源

  • 可压缩资源(如CPU):在资源不足时,只会延长Pod的运行时间,不会导致Pod被杀死。
  • 不可压缩资源(如内存):一旦资源不足,Pod将被内核杀死并强制退出。

QoS模型

K8s将Pod划分为三种QoS类别:Guaranteed、Burstable和BestEffort,以便在资源不足时进行优先级排序和选择。

  • Guaranteed:Pod中的每个Container都设置了相同的requests和limits值。
  • Burstable:至少有一个Container设置了requests,但不满足Guaranteed条件。
  • BestEffort:既没有设置requests也没有设置limits。

在资源回收时,BestEffort类别的Pod将首先被考虑,其次是Burstable类别且资源使用量超出requests的Pod,最后是Guaranteed类别的Pod。

四、高级调度策略与未来展望

为了进一步提升大模型算力的调度效率,K8s社区正在不断探索新的调度策略和技术。例如,CPU Manager功能可以帮助更精细地管理CPU资源,通过绑定CPU核心来减少上下文切换和缓存失效,从而提高应用程序的性能。

此外,随着K8s生态的不断发展,更多的调度插件和扩展工具将被引入,以支持更复杂的调度场景和需求。例如,基于节点资源拓扑信息的精细化调度系统,可以更好地感知节点的物理结构和资源分布,从而实现更高效的资源分配和管理。

结论

K8s作为容器编排的领先平台,在大模型算力调度中发挥着重要作用。通过合理的调度策略和资源管理优化,可以确保大模型训练和推理任务的高效运行。未来,随着技术的不断进步和社区的不断努力,K8s在大模型算力调度方面的能力将进一步提升,为人工智能和大数据领域的发展提供更强有力的支撑。

标签:node,解析,调度,Pod,K8s,算力,节点,资源
From: https://blog.csdn.net/myTomorrow_better/article/details/140802103

相关文章

  • AquaCrop模型农业水资源管理及代码解析
    AquaCrop是由世界粮食及农业组织(FAO)开发的一个先进模型,旨在研究和优化农作物的水分生产效率。这个模型在全球范围内被广泛应用于农业水管理,特别是在制定农作物灌溉计划和应对水资源限制方面显示出其强大的实用性。AquaCrop不仅包含一个全面的数据库,还提供了用户友好的接口,使得......
  • Android开发 - ArrayList类动态数组与ArrayList<Fragment>解析
    什么是ArrayListArrayList是Java编程语言中的一个类,它实现了动态数组的数据结构。简单来说,ArrayList允许我们创建一个可以动态增长或缩减的数组,这在处理需要频繁添加或删除元素的情况下非常有用主要特点和用途动态大小:ArrayList的大小可以根据需要动态增长或缩减,与普通的数......
  • Docker镜像构建:技术深度解析与实践指南
    本文深入分析了Docker镜像构建的技术细节,从基础概念到高级技术,涵盖了多阶段构建、安全性优化、性能提升及实战案例。旨在为专业人士提供全面的技术洞察和实用指导,以提升Docker镜像构建的效率和安全性。关注【TechLeadCloud】,分享互联网架构、云服务技术的全维度知识。作者拥有......
  • 二进制部署k8s集群之cni网络插件flannel和calico工作原理(中)
    目录1.k8s的三种网络模式2.flannel网络插件3.部署CNI网络组件4.Calico介绍1.k8s的三种网络模式k8s集群中pod网络通信分类1、pod内容器之间的通信在同一个Pod内的容器(Pod内的容器是不会跨宿主机的)共享同一个网络命令空间,相当于它们在同一台机器上一样,可以用loc......
  • opencloudosV8.6和openEuler 24安装 k8s
    在三台机器上部署Kubernetes集群1.环境准备2.在所有节点上进行以下步骤1.更新系统和安装必要的软件包2.禁用交换分区3.禁用防火墙和SElinux4.系统主机名5.设置主机名与IP地址解析6.配置内核转发及网桥过滤7.配置DockerCgroup驱动8.添加Kubernetes仓库并安装......
  • Android系统启动流程(4) —— 解析Launcher启动过程
    链接https://blog.csdn.net/lixiong0713/article/details/106762977相关文章Android系统启动流程(1) —— 解析init进程启动过程Android系统启动流程(2) —— 解析Zygote进程启动过程Android系统启动流程(3) —— 解析SystemServer进程启动过程Launcher启动过程  ......
  • Android开发 - setOnTouchListener 监听触控事件解析
    事件解析setOnTouchListener(newOnTouchListener(){});:事件分发解析MotionEvent.ACTION_DOWN:按下MotionEvent.ACTION_MOVE:滑动MotionEvent.ACTION_UP:抬起使用方法//部分区域调用需要对象:view.setOnTouchListener(newview.OnTouchListener(){})setOnTouchListe......
  • 深入解析 Go 语言 GMP 模型:并发编程的核心机制
    前言本章是Go并发编程的起始篇章,在未来几篇文章中我们会围绕Go并发编程进行理论和实战的学习,欢迎关注我哦!本章主要以介绍GMP模型为主,偏向于面试和八股,目的是让小伙伴们注重于知识本身,面向面试,面向八股,面向加薪。Go语言自诞生以来,就以其简洁、高效的并发模型著称。而这其中的核......
  • 线性回归和逻辑回归揭示数据的隐藏模式:理论与实践全解析
    机器学习之线性回归和逻辑回归1.简介1.1机器学习概述1.2监督学习的定义与重要性1.3线性回归和逻辑回归在监督学习中的作用1.3.1线性回归1.3.2逻辑回归2.线性回归(LinearRegression)2.1定义与目标2.1.1回归问题的定义2.1.2预测连续目标变量2.2模型概述2.2.1......
  • Android开发 - 用Math类方法计算弧度后转为角度解析
    方法参数解析Math.atan2(y,x):将两个参数计算出弧度参数解析:y:指定点的y坐标的数字;在三角计算中为对边边长;在圆的计算弧度中为指定y点与中心点的距离,指定点y减去中心点的y即可得出x:指定点的x坐标的数字;在三角计算中为对边边长;在圆的计算弧度中为指定x点与中心点的距离,指......