吴恩达教授最近在红杉 AI 峰会上讲述了他对 Agent 的一些看法,尽管一些媒体已经进行了相关报道,但为了分发的及时性,而采用了机翻的方式,牺牲了表述的准确性,增加了不必要的阅读门槛。
特工宇宙于是重新整理翻译了一版,既保留了吴恩达教授的原意,又加之了部分个人理解。期望即使是外行,也能无障碍阅读。
如今,我们在使用 ChatGPT 等 AI 工具时,基本我们会输入一个 Prompt,然后得到一个答案。这就有点像你给定一个主题,然后让一个人去写文章,你跟 Ta 说,坐在电脑边,去敲键盘吧!不断的打字直到写完全部。
相比之下,如果使用 Agentic Workflow(这很难信雅达地翻译,姑且认为是智能体工作流,即基于大语言模型的用流程构建的智能体系统),就好比你跟 Ta 说,先写一个大纲,如果需要的话去网上查点资料,再写一个草稿,然后思考你的草稿该怎么改,最后再修改,多次如此迭代。很多人没有意识到这会带来多大的优化,事实是我经常这样做,得到的效果非常惊艳。
我们团队做了一个案例研究,使用了 HumanEval (OpenAI 为了评估编程语言模型而设计的数据集),但出现了一些错误,比如我举的这个例子,“我给你一个数字列表里,找出奇数位置上的数字,返回其中所有奇数之和”,然后 AI 给了错误的回答。
我们平常大都会使用 Zero-shot(不给大模型具体训练样本或标签提示,直接提问让其回答)来写 Prompt,就是直接让 AI 编写代码并运行(这不是一个明智的做法)。
我们的研究结果表明,如果你使用GPT3.5 + Zero-shot 的正确率为 48%,GPT4 + Zero-shot 的正确率为 67%,但是,如果你用 GPT3.5 + Agentic Workflow,你会得到超越 GPT4 的效果! 因此,Agent 在构建 AI 应用时非常重要。
(然后就到了主题) 尽管很多学者、专家谈论了很多关于 Agent 的东西,但我今天想更具体的分享我在 Agent 中看到比较广泛的四种设计模式(尽管很多团队,开源项目等做了很多种多样的尝试,但我还是按我的理解划分成了四类)。
Reflection 和 Tool Use 属于比较经典且相对已经广泛使用的方式,Planning 和 Multi-agent 属于比较新颖比较有前景的方式。
第一个讲的就是 Reflection(反思,类似于 AI 的自我纠错和迭代),举个栗子,我们让用 Reflection 构建好的一个 AI 系统写个xxx代码,然后 AI 会把这个代码,加上类似“检查此段代码的正确性,告诉我如何修改”的话术,再返回给 AI,AI可能会给你提出其中的 Bug,然后如此反复,AI 自己完成了自我迭代,虽然修改后的代码质量不一定能保证,但基本上来说效果会更好。
(每页PPT下方,吴恩达大佬都推荐了一些相关论文,可以去看看)
如上表述的是案例是 Single-agent(区别于 Mutli-agent 的单智能体),但其实你也可以用两个 Agent,一个写代码,然后另一个来 Debug
标签:GPT5,吴恩达,AI,模型,Agent,学习,代码 From: https://blog.csdn.net/xiangxueerfei/article/details/140780292