首页 > 其他分享 >李沐动手学深度学习V2-chapter_linear-networks

李沐动手学深度学习V2-chapter_linear-networks

时间:2024-07-17 21:31:32浏览次数:11  
标签:chapter linear self torch iter V2 train net data

李沐动手学深度学习V2

文章内容说明

本文主要是自己学习过程中的随手笔记,需要自取
课程参考B站https://space.bilibili.com/1567748478?spm_id_from=333.788.0.0
课件等信息原视频简介中有


线性回归从零实现

导入包

%matplotlib inline
import random
import torch
from d2l import torch as d2l

生成人造数据集

image

def synthetic_data(w, b, num_examples):  #@save
    """生成y=Xw+b+噪声"""
    X = torch.normal(0, 1, (num_examples, len(w)))
    y = torch.matmul(X, w) + b
    y += torch.normal(0, 0.01, y.shape)
    return X, y.reshape((-1, 1))

true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)

print('features:', features[0],'\nlabel:', labels[0])

d2l.set_figsize()
d2l.plt.scatter(features[:, (1)].detach().numpy(), labels.detach().numpy(), 1);ython

结果如下:
image
image

读取数据集

定义一个data_iter函数, 该函数接收批量大小、特征矩阵和标签向量作为输入,生成大小为batch_size的小批量

def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    # 这些样本是随机读取的,没有特定的顺序
    random.shuffle(indices)
    for i in range(0, num_examples, batch_size):
        batch_indices = torch.tensor(
            indices[i: min(i + batch_size, num_examples)])
        yield features[batch_indices], labels[batch_indices]

batch_size = 10

for X, y in data_iter(batch_size, features, labels):
    print(X, '\n', y)
    break

结果如下:
image

定义模型

定义模型,将模型的输入和参数同模型的输出关联起来

w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)

def linreg(X, w, b):  #@save
    """线性回归模型"""
    return torch.matmul(X, w) + b

定义损失函数

def squared_loss(y_hat, y):  #@save
    """均方损失"""
    return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2

定义优化算法

def sgd(params, lr, batch_size):  #@save
    """小批量随机梯度下降"""
    with torch.no_grad():
        for param in params:
            param -= lr * param.grad / batch_size
            param.grad.zero_()

训练

image

lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss

for epoch in range(num_epochs):
    for X, y in data_iter(batch_size, features, labels):
        l = loss(net(X, w, b), y)  # X和y的小批量损失
        # 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,
        # 并以此计算关于[w,b]的梯度
        l.sum().backward()
        sgd([w, b], lr, batch_size)  # 使用参数的梯度更新参数
    with torch.no_grad():
        train_l = loss(net(features, w, b), labels)
        print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')

结果如下:
image
因为我们使用的是自己合成的数据集,所以我们知道真正的参数是什么。 因此,我们可以通过比较真实参数和通过训练学到的参数来评估训练的成功程度。 事实上,真实参数和通过训练学到的参数确实非常接近。

print(f'w的估计误差: {true_w - w.reshape(true_w.shape)}')
print(f'b的估计误差: {true_b - b}')

结果如下:
image

线性回归简介实现

生成数据集

import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l 

true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)

读取数据集

调用框架中现有API读取数据

def load_array(data_arrays, batch_size, is_train=True):  #@save
    """构造一个PyTorch数据迭代器"""
    dataset = data.TensorDataset(*data_arrays)
    return data.DataLoader(dataset, batch_size, shuffle=is_train)

batch_size = 10
data_iter = load_array((features, labels), batch_size)

next(iter(data_iter))

结果如下:
image

定义模型

使用框架的预定义好的层

# nn是神经网络的缩写
from torch import nn

net = nn.Sequential(nn.Linear(2, 1))

image

net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)

结果如下:
image

定义损失函数

计算均方误差使用的是MSELoss类,也称为平方L2范数。 默认情况下,它返回所有样本损失的平均值。

loss = nn.MSELoss()

定义优化算法

trainer = torch.optim.SGD(net.parameters(), lr=0.03)

训练

num_epochs = 3
for epoch in range(num_epochs):
    for X, y in data_iter:
        l = loss(net(X) ,y)
        trainer.zero_grad()
        l.backward()
        trainer.step()
    l = loss(net(features), labels)
    print(f'epoch {epoch + 1}, loss {l:f}')

结果如下:
image
比较生成数据集的真实参数和通过有限数据训练获得的模型参数

w = net[0].weight.data
print('w的估计误差:', true_w - w.reshape(true_w.shape))
b = net[0].bias.data
print('b的估计误差:', true_b - b)

结果如下:
image

Softmax回归(分类问题)

从回归到多类分类

--均方损失
image
--无校验比例
image
--校验比例
image
交叉熵损失
image
总结一下:
1.Softmax回归是一个多类分类模型
2.使用Softmax操作得到每个类的预测置信度
3.使用交叉熵来衡量预测和标号的区别

3个常用的损失函数

L2 loss(均方损失)

image
蓝色:y=0,变换y'
绿色:似然函数,e的﹣L次方
橙色:梯度
红箭头:指梯度大小

L1 loss(绝对值损失函数)

image

Huber's Robust loss(结合上面两个)

image
image

图像分类数据集的使用

(MNIST数据集) :cite:LeCun.Bottou.Bengio.ea.1998 (是图像分类中广泛使用的数据集之一,但作为基准数据集过于简单。 我们将使用类似但更复杂的Fashion-MNIST数据集) :cite:Xiao.Rasul.Vollgraf.2017。

引入库

%matplotlib inline
import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l

d2l.use_svg_display()

读取数据集

通过框架中的内置函数(torchvision.datasets.xxx)将Fashion-MNIST数据集下载并读取到内存中

# 通过ToTensor实例将图像数据从PIL类型变换成32位浮点数格式,
# 并除以255使得所有像素的数值均在0~1之间
trans = transforms.ToTensor()
mnist_train = torchvision.datasets.FashionMNIST(
    root="../data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(
    root="../data", train=False, transform=trans, download=True)

len(mnist_train), len(mnist_test)
# 结果:(60000, 10000)
mnist_train[0][0].shape
# 结果:torch.Size([1, 28, 28])
# 每个输入图像的高度和宽度均为28像素。 数据集由灰度图像组成,其通道数为1。

可视化数据集函数

Fashion-MNIST中包含的10个类别,分别为t-shirt(T恤)、trouser(裤子)、pullover(套衫)、dress(连衣裙)、coat(外套)、sandal(凉鞋)、shirt(衬衫)、sneaker(运动鞋)、bag(包)和ankle boot(短靴)。 以下函数用于在数字标签索引及其文本名称之间进行转换。

# 获取标签
def get_fashion_mnist_labels(labels):  #@save
    """返回Fashion-MNIST数据集的文本标签"""
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                   'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]

# 绘制图像
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):  #@save
    """绘制图像列表"""
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
    axes = axes.flatten()
    for i, (ax, img) in enumerate(zip(axes, imgs)):
        if torch.is_tensor(img):
            # 图片张量
            ax.imshow(img.numpy())
        else:
            # PIL图片
            ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        if titles:
            ax.set_title(titles[i])
    return axes

以下是训练数据集中前几个样本的图像及其相应的标签

X, y = next(iter(data.DataLoader(mnist_train, batch_size=18)))
show_images(X.reshape(18, 28, 28), 2, 9, titles=get_fashion_mnist_labels(y));

结果如下:
image

读取小批量

使用内置的数据迭代器,而不是从零开始创建。在每次迭代中,数据加载器每次都会读取一小批量数据,大小为batch_size

batch_size = 256

def get_dataloader_workers():  #@save
    """使用4个进程来读取数据"""
    return 4

train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True,
                             num_workers=get_dataloader_workers())

查看训练数据所需时间,读取数据速度要比这个快一些

timer = d2l.Timer()
for X, y in train_iter:
    continue
f'{timer.stop():.2f} sec'

整合所有组件

def load_data_fashion_mnist(batch_size, resize=None):  #@save
    """下载Fashion-MNIST数据集,然后将其加载到内存中"""
    trans = [transforms.ToTensor()]
    if resize:
        trans.insert(0, transforms.Resize(resize))
    trans = transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(
        root="../data", train=True, transform=trans, download=True)
    mnist_test = torchvision.datasets.FashionMNIST(
        root="../data", train=False, transform=trans, download=True)
    return (data.DataLoader(mnist_train, batch_size, shuffle=True,
                            num_workers=get_dataloader_workers()),
            data.DataLoader(mnist_test, batch_size, shuffle=False,
                            num_workers=get_dataloader_workers()))

通过指定resize参数测试函数图像调整大小功能

train_iter, test_iter = load_data_fashion_mnist(32, resize=64)
for X, y in train_iter:
    print(X.shape, X.dtype, y.shape, y.dtype)
    break

结果如下
image

Softmax回归从零开始实现

导入包和设置迭代器批量大小

import torch
from IPython import display
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

初始化模型参数

将展平每个图像,把它们看作长度为784的向量。因为我们的数据集有10个类别,所以网络输出维度为10

num_inputs = 784
num_outputs = 10

W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)

定义Softmax操作

给定一个矩阵X,我们可以对所有元素求和
第一个参数是第几维求和

X = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
X.sum(0, keepdim=True), X.sum(1, keepdim=True)

结果如下
image

实现Softmax

image
实现Softmax的三个步骤
1.对每个项求幂(使用exp);
2.对每一行求和(小批量中每个样本是一行),得到每个样本的规范化常数;
3.将每一行除以其规范化常数,确保结果的和为1。

def softmax(X):
    X_exp = torch.exp(X)
    partition = X_exp.sum(1, keepdim=True)
    return X_exp / partition  # 这里应用了广播机制

我们将每个元素变成一个非负数。 此外,依据概率原理,每行总和为1

X = torch.normal(0, 1, (2, 5))
X_prob = softmax(X)
X_prob, X_prob.sum(1)

定义模型

def net(X):
    return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)

定义损失函数

创建一个数据样本y_hat,其中包含2个样本在3个类别的预测概率, 以及它们对应的标签y。使用y作为y_hat中概率的索引

y = torch.tensor([0, 2])
y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y_hat[[0, 1], y] # 对于第0个样本拿出y0的概率,第1个样本拿出y1的概率

结果如下
image
实现交叉熵损失函数

def cross_entropy(y_hat, y):
    return - torch.log(y_hat[range(len(y_hat)), y])

cross_entropy(y_hat, y)

结果如下
image

分类精度

将预测类别与真实y元素进行比较

def accuracy(y_hat, y):  #@save
    """计算预测正确的数量"""
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
        y_hat = y_hat.argmax(axis=1)
    cmp = y_hat.type(y.dtype) == y
    return float(cmp.type(y.dtype).sum())

accuracy(y_hat, y) / len(y)

结果如下
image
我们可以评估在任意模型net的精度

def evaluate_accuracy(net, data_iter):  #@save
    """计算在指定数据集上模型的精度"""
    if isinstance(net, torch.nn.Module):
        net.eval()  # 将模型设置为评估模式
    metric = Accumulator(2)  # 正确预测数、预测总数
    with torch.no_grad():
        for X, y in data_iter:
            metric.add(accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]

# Accumulator实例中创建了2个变量, 分别用于存储正确预测的数量和预测的总数量
class Accumulator:  #@save
    """在n个变量上累加"""
    def __init__(self, n):
        self.data = [0.0] * n

    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]

evaluate_accuracy(net, test_iter)

结果如下
image

softmax回归的训练

def train_epoch_ch3(net, train_iter, loss, updater):  #@save
    """训练模型一个迭代周期(定义见第3章)"""
    # 将模型设置为训练模式
    if isinstance(net, torch.nn.Module):
        net.train()
    # 训练损失总和、训练准确度总和、样本数
    metric = Accumulator(3)
    for X, y in train_iter:
        # 计算梯度并更新参数
        y_hat = net(X)
        l = loss(y_hat, y)
        if isinstance(updater, torch.optim.Optimizer):
            # 使用PyTorch内置的优化器和损失函数
            updater.zero_grad()
            l.mean().backward()
            updater.step()
        else:
            # 使用定制的优化器和损失函数
            l.sum().backward()
            updater(X.shape[0])
        metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
    # 返回训练损失和训练精度
    return metric[0] / metric[2], metric[1] / metric[2]

# 定义一个在动画中绘制数据的实用程序类 Animator
class Animator:  #@save
    """在动画中绘制数据"""
    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                 ylim=None, xscale='linear', yscale='linear',
                 fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
                 figsize=(3.5, 2.5)):
        # 增量地绘制多条线
        if legend is None:
            legend = []
        d2l.use_svg_display()
        self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        # 使用lambda函数捕获参数
        self.config_axes = lambda: d2l.set_axes(
            self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts

    def add(self, x, y):
        # 向图表中添加多个数据点
        if not hasattr(y, "__len__"):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        display.display(self.fig)
        display.clear_output(wait=True)

# 实现训练函数
def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):  #@save
    """训练模型(定义见第3章)"""
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
                        legend=['train loss', 'train acc', 'test acc'])
    for epoch in range(num_epochs):
        train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
        test_acc = evaluate_accuracy(net, test_iter)
        animator.add(epoch + 1, train_metrics + (test_acc,))
    train_loss, train_acc = train_metrics
    assert train_loss < 0.5, train_loss
    assert train_acc <= 1 and train_acc > 0.7, train_acc
    assert test_acc <= 1 and test_acc > 0.7, test_acc

# 使用 :numref:sec_linear_scratch中定义的 [小批量随机梯度下降来优化模型的损失函数],设置学习率为0.1。
lr = 0.1

def updater(batch_size):
    return d2l.sgd([W, b], lr, batch_size)

# 训练模型10个迭代周期
num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)

结果如下
image

对图像进行分类预测

def predict_ch3(net, test_iter, n=6):  #@save
    """预测标签(定义见第3章)"""
    for X, y in test_iter:
        break
    trues = d2l.get_fashion_mnist_labels(y)
    preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
    titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
    d2l.show_images(
        X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])

predict_ch3(net, test_iter)

结果如下
image

Softmax的简洁实现

import torch
from torch import nn
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

# 初始化模型参数
# PyTorch不会隐式地调整输入的形状。因此,
# 我们在线性层前定义了展平层(flatten),来调整网络输入的形状
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights);

# 在交叉熵损失函数中传递未规范化的预测,并同时计算softmax及其对数
loss = nn.CrossEntropyLoss(reduction='none')

# 使用学习率为0.1的小批量随机梯度下降作为优化算法
trainer = torch.optim.SGD(net.parameters(), lr=0.1)

# 调用之前定义的训练函数来训练模型
num_epochs = 10
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

结果如下
image

标签:chapter,linear,self,torch,iter,V2,train,net,data
From: https://www.cnblogs.com/Mmbhcyt/p/18280712

相关文章

  • 基于V2X协作的端到端自动驾驶
    基于V2X协作的端到端自动驾驶论文链接:https://arxiv.org/pdf/2404.00717.pdf代码链接:https://github.com/AIR-THU/UniV2X附赠自动驾驶最全的学习资料和量产经验:链接摘要本文介绍了基于V2X协作的端到端自动驾驶。基于V2X通信协同利用自车和基础设施传感器数据已经成......
  • PC XMind v24.01.14362 解锁版安装教程 (全球领先的商业思维导图软件)
    前言XMind是一款专业的全球领先的商业思维导图软件,在国内使用广泛,拥有强大的功能、包括思维管理、商务演示、与办公软件协同工作等功能。它采用全球先进的EclipseRCP软件架构,是集思维导图与头脑风暴于一体的可视化思考工具,能用来捕捉想法、理清思路、管理复杂信息并促进团队协......
  • 安卓MT管理器v2.16.2/逆向修改神器 本地VIP已解锁
    MT管理器是一款强大的文件管理工具和APK逆向修改神器。如果你喜欢它的双窗口操作风格,可以单纯地把它当成文件管理器使用。如果你对修改APK有深厚的兴趣,那么你可以用它做许许多多的事,例如汉化应用、替换资源、修改布局、修改逻辑代码、资源混淆、去除签名校验等,主要取决于你如......
  • EmEditor v24.2.1 汉化版
    EmEditor文本编辑器是一款功能强大且非常好用的文本编辑器!它启动速度快,可以完全代替Windows自带的记事本,足以胜任日常的文本编辑工作。良好地支持Unicode和中文字符,还支持20多种编程语言的语法突出显示。并且支持的语法种类可以不断的扩充。具有选择文本列块的功能(按ALT键拖动鼠......
  • Iceberg v2表写入和微批治理冲突,如何保证治理准确性
    一、背景微批治理任务分多个job治理一张表,还有一个Flink程序每5分钟一次写入iceberg表,如治理任务划分了20个job治理一张表,在治理期间存在新的数据更新,如何保证治理准确性 二、猜想待验证1、治理和写入时快照和文件变化snapshot_idmanifest_file备注    ......
  • CS229|Ch1|Linear regression
    Trainingset:\(\{(x^i,y^i);i=1,...,n\}\)\(x^i\in{X}\):input(features)\(y^i\in{Y}\):output(1)continuousvalues——Regression(2)discretevalues——ClassificationSupervisedlearning主要任务为找functionGivenatrainingset,learnafunction(hyp......
  • 硬件检测工具 | CPU-Z v2.10.0 官方中文绿色版
    软件简介CPU-Z是一款广受欢迎的硬件检测工具,主要用于收集电脑处理器的详细信息。这款软件能够提供关于CPU的详细数据,包括处理器名称、编号、代号、进程和缓存等信息。此外,CPU-Z还能实时监测每个内核的内部频率和内存频率,以及收集主板和芯片组、内存类型、大小和时序等信息。......
  • 安卓MT管理器v2.16.2/逆向修改神器 本地VIP已解锁
    MT管理器是一款强大的文件管理工具和APK逆向修改神器。如果你喜欢它的双窗口操作风格,可以单纯地把它当成文件管理器使用。如果你对修改APK有深厚的兴趣,那么你可以用它做许许多多的事,例如汉化应用、替换资源、修改布局、修改逻辑代码、资源混淆、去除签名校验等,主要取决于你如......
  • 使用预训练模型(yolov8、MobileNetV2、ResNet50)与Gradio构建图像目标检测Web应用
    简介:  利用gradio设计一个web运用,实现图片主体物的识别。  1)用户可以通过网页提交一张图片。  2)web应用将输出这张图片中主体物的名称(中英文都可以)。  3)可以使用预训练的模型。利用预训练实现对物体识别准备工作在开始之前,请确保你的环境中已安装了以下依赖......
  • 中兴F450G V2超级密码
    中兴F450GV2超级密码本次使用版本为F450GV2.0.0P1T1sh声明原文:https://www.right.com.cn/forum/thread-4033238-1-1.htmlhttps://www.52pojie.cn/thread-1738384-1-1.html原文说是支持F452,F652本文档仅测试url为common_page的路径结果展示下载配置通过以下url可以......