题意简述如下:
给定一个正整数 \(n\),请构造一个正整数序列使其满足以下条件并尽可能长:这个序列中每个数都大于等于 \(1\) 且小于等于\(n\);这个序列是单调递增的;这个序列中任意两个相邻的数按位或的结果都为 \(n\)。
通过手玩或者写个最长上升子序列可以发现,我们记这个数在二进制位上 \(1\) 的个数为 \(c\),当 \(c=1\) 时,序列最长的长度为 \(1\),否则为 \(c+1\)。
然后很显然的构造,当 \(c=1\) 时直接输出自身,否则这 \(c+1\) 个数中第 \(i\) 个数为将 \(n\) 从高位到低位第 \(i\) 个 \(1\) 改为 \(0\) 后的值,当然第 \(c+1\) 个数一定最大,就是 \(n\)。
最后为什么长度为 \(c+1\) 时是最大的,可以感性理解一下,显然上文中的构造方法是每一个数都是 \(n\) 的二进制下去掉一位,如果去掉的位数大于一位,又要保证其单调递增,那么长度就会小于 \(c+1\)。
#include <bits/stdc++.h>
#define LL long long
using namespace std;
LL t[100], tot = 0;
int main() {
ios :: sync_with_stdio(0); cin.tie(0); cout.tie(0);
LL T, n; cin >> T;
while (T --) {
cin >> n; tot = 0;
for (LL i = 0; i <= 62; i ++) {
if ((n >> i) & 1) t[++ tot] = i;
}
if (tot == 1) {
cout << "1\n" << n << "\n";
continue;
} else cout << tot + 1 << "\n";
for (LL i = tot; i >= 1; i --) {
cout << (n ^ (1LL << t[i])) << " ";
}
cout << n << "\n";
}
return 0;
}
标签:Increasing,cout,LL,CF1988C,个数,cin,tot,序列,Fixed
From: https://www.cnblogs.com/LaDeX-Blog/p/18304640/CF1988C