首页 > 其他分享 >Flink滚动滑动窗口的区别

Flink滚动滑动窗口的区别

时间:2024-07-14 20:54:39浏览次数:18  
标签:滚动 定义 Flink 步长 大小 滑动 窗口

1 滚动窗口(Tumbling Windows)
滚动窗口有固定的大小,是一种对数据进行“均匀切片”的划分方式。窗口之间没有重叠,也不会有间隔,是“首尾相接”的状态。如果我们把多个窗口的创建,看作一个窗口的运动,那就好像它在不停地向前“翻滚”一样。这是最简单的窗口形式,我们之前所举的例子都是滚动窗口。也正是因为滚动窗口是“无缝衔接”,所以每个数据都会被分配到一个窗口,而且只会属于一个窗口。
滚动窗口可以基于时间定义,也可以基于数据个数定义;需要的参数只有一个,就是窗口的大小(window size)。比如我们可以定义一个长度为 1 小时的滚动时间窗口,那么每个小时就会进行一次统计;或者定义一个长度为 10 的滚动计数窗口,就会每 10 个数进行一次统计。


2 滑动窗口(Sliding Windows)
与滚动窗口类似,滑动窗口的大小也是固定的。区别在于,窗口之间并不是首尾相接的,而是可以“错开”一定的位置。如果看作一个窗口的运动,那么就像是向前小步“滑动”一样。

既然是向前滑动,那么每一步滑多远,就也是可以控制的。所以定义滑动窗口的参数有两个:除去窗口大小(window size)之外,还有一个“滑动步长”(window slide),它其实就代
表了窗口计算的频率。滑动的距离代表了下个窗口开始的时间间隔,而窗口大小是固定的,所以也就是两个窗口结束时间的间隔;窗口在结束时间触发计算输出结果,那么滑动步长就代表
了计算频率。例如,我们定义一个长度为 1 小时、滑动步长为 5 分钟的滑动窗口,那么就会统计 1 小时内的数据,每 5 分钟统计一次。同样,滑动窗口可以基于时间定义,也可以基于数据
个数定义。


我们可以看到,当滑动步长小于窗口大小时,滑动窗口就会出现重叠,这时数据也可能会被同时分配到多个窗口中。而具体的个数,就由窗口大小和滑动步长的比值(size/slide)来决
定。如图 6-18 所示,滑动步长刚好是窗口大小的一半,那么每个数据都会被分配到 2 个窗口里。比如我们定义的窗口长度为 1 小时、滑动步长为 30 分钟,那么对于 8 点 55 分的数据,应该同时属于[8 点, 9 点)和[8 点半, 9 点半)两个窗口;而对于 8 点 10 分的数据,则同时属于[8点, 9 点)和[7 点半, 8 点半)两个窗口。所以,滑动窗口其实是固定大小窗口的更广义的一种形式;换句话说,滚动窗口也可以看作是一种特殊的滑动窗口——窗口大小等于滑动步长(size = slide)。当然,我们也可以定义滑动步长大于窗口大小,这样的话就会出现窗口不重叠、但会有间隔的情况;这时有些数据不
属于任何一个窗口,就会出现遗漏统计。所以一般情况下,我们会让滑动步长小于窗口大小,并尽量设置为整数倍的关系。

在一些场景中,可能需要统计最近一段时间内的指标,而结果的输出频率要求又很高,甚至要求实时更新,比如股票价格的 24 小时涨跌幅统计,或者基于一段时间内行为检测的异常报警。这时滑动窗口无疑就是很好的实现方式。

标签:滚动,定义,Flink,步长,大小,滑动,窗口
From: https://blog.csdn.net/2301_80989898/article/details/140396343

相关文章