首页 > 其他分享 >【带你全面了解 RAG,深入探讨其核心范式、关键技术及未来趋势】

【带你全面了解 RAG,深入探讨其核心范式、关键技术及未来趋势】

时间:2024-07-13 11:57:50浏览次数:12  
标签:检索 RAG 增强 范式 模型 深入探讨 技术 学习

文末有福利!

大型语言模型(LLMs)已经成为我们生活和工作的一部分,它们以惊人的多功能性和智能化改变了我们与信息的互动方式。

然而,尽管它们的能力令人印象深刻,但它们并非无懈可击。这些模型可能会产生误导性的 “幻觉”,依赖的信息可能过时,处理特定知识时效率不高缺乏专业领域的深度洞察,同时在推理能力上也有所欠缺。

在现实世界的应用中,数据需要不断更新以反映最新的发展,生成的内容必须是透明可追溯的,以便控制成本并保护数据隐私。因此,简单依赖于这些 “黑盒” 模型是不够的,我们需要更精细的解决方案来满足这些复杂的需求。

正是在这样的背景下,检索增强生成技术(Retrieval-Augmented Generation,RAG)应时而生,成为 AI 时代的一大趋势。

RAG 通过在语言模型生成答案之前,先从广泛的文档数据库中检索相关信息,然后利用这些信息来引导生成过程,极大地提升了内容的准确性和相关性。RAG 有效地缓解了幻觉问题,提高了知识更新的速度,并增强了内容生成的可追溯性,使得大型语言模型在实际应用中变得更加实用和可信。RAG 的出现无疑是人工智能研究领域最激动人心的进展之一。

本篇综述将带你全面了解 RAG,深入探讨其核心范式关键技术未来趋势,为读者和实践者提供对大型模型以及 RAG 的深入和系统的认识,同时阐述检索增强技术的最新进展和关键挑战。

论文链接:

https://arxiv.org/abs/2312.10997

官方仓库:

https://github.com/Tongji-KGLLM/RAG-Survey

1、RAG 是什么?

▲ 图1. RAG 技术在 QA 问题中的案例

一个典型的 RAG 案例如图所示。如果我们向 ChatGPT 询问 OpenAI CEO Sam Atlman 在短短几天内突然解雇随后又被复职的事情。由于受到预训练数据的限制,缺乏对最近事件的知识,ChatGPT 则表示无法回答。RAG 则通过从外部知识库检索最新的文档摘录来解决这一差距。

在这个例子中,它获取了一系列与询问相关的新闻文章。这些文章,连同最初的问题,随后被合并成一个丰富的提示,使 ChatGPT 能够综合出一个有根据的回应。
在这里插入图片描述

2、RAG 技术范式发展

RAG 的概念首次于 2020 年被提出,随后进入高速发展。RAG 技术的演进历程如图所示,相关研究进展可以明确地划分为数个关键阶段。在早期的预训练阶段,研究的焦点集中在如何通过预训练模型注入额外的知识,以此增强语言模型的能力。

随着 ChatGPT 的面世,对于运用大型模型进行深层次上下文学习的兴趣激增,这推动了 RAG 技术在研究领域的快速发展。随着 LLMs 的潜力被进一步开发,旨在提升模型的可控性并满足不断演变的需求,RAG 的研究逐渐聚焦于增强推理能力,并且也探索了在微调过程中的各种改进方法。

特别是随着 GPT-4 的发布,RAG 技术经历了一次深刻的变革。研究重点开始转移至一种新的融合 RAG 和微调策略的方法,并且持续关注对预训练方法的优化。

▲ 图2. RAG 技术发展的科技树

在 RAG 的技术发展过程中,我们从技术范式角度,将其总结成如下几个阶段:

朴素(Naive RAG)

前文案例中展示了经典的 RAG 流程,也被称为 Naive RAG。主要包括包括三个基本步骤:

  1. 索引 — 将文档库分割成较短的 Chunk,并通过编码器构建向量索引。

  2. 检索 — 根据问题和 chunks 的相似度检索相关文档片段。

  3. 生成 — 以检索到的上下文为条件,生成问题的回答。

进阶的 RAG(Advanced RAG)

Naive RAG 在检索质量、响应生成质量以及增强过程中存在多个挑战。Advanced RAG 范式随后被提出,并在数据索引、检索前和检索后都进行了额外处理。

通过更精细的数据清洗、设计文档结构和添加元数据等方法提升文本的一致性、准确性和检索效率。在检索前阶段则可以使用问题的重写、路由和扩充等方式对齐问题和文档块之间的语义差异。在检索后阶段则可以通过将检索出来的文档库进行重排序避免 “Lost in the Middle ” 现象的发生。或是通过上下文筛选与压缩的方式缩短窗口长度。

模块化 RAG(Modular RAG)

随着 RAG 技术的进一步发展和演变,新的技术突破了传统的 Naive RAG 检索 — 生成框架,基于此我们提出模块化 RAG 的概念。在结构上它更加自由的和灵活,引入了更多的具体功能模块,例如查询搜索引擎、融合多个回答。技术上将检索与微调、强化学习等技术融合。流程上也对 RAG 模块之间进行设计和编排,出现了多种的 RAG 模式。

然而,模块化 RAG 并不是突然出现的,三个范式之间是继承与发展的关系。Advanced RAG 是 Modular RAG 的一种特例形式,而 Naive RAG 则是 Advanced RAG 的一种特例。

▲ 图3. RAG 范式对比图

3、如何进行检索增强?

RAG 系统中主要包含三个核心部分,分别是 “检索”,“增强” 和 “生成”。正好也对应的 RAG 中的三个首字母。想要构建一个好的 RAG 系统,增强部分是核心,则需要考虑三个关键问题:检索什么?什么时候检索?怎么用检索的内容?

检索增强的阶段:在预训练、微调和推理三个阶段中都可以进行检索增强,这决定了外部知识参数化程度的高低,对应所需要的计算资源也不同。

检索增强的数据源:增强可以采用多种形式的数据,包括非结构化的文本数据,如文本段落、短语或单个词汇。此外,也可以利用结构化数据,比如带有索引的文档、三元组数据或子图。另一种途径是不依赖外部信息源,而是充分发挥 LLMs 的内在能力,从模型自身生成的内容中检索。

检索增强的过程:最初的检索是一次性过程,在 RAG 发展过程中逐渐出现了迭代检索、递归检索以及交由 LLMs 自行判断检索时刻的自适应检索方法。

▲ 图4. RAG 核心组件的分类体系

4、RAG 和微调应该如何选择?

除了 RAG,LLMs 主要优化手段还包括了提示工程 (Prompt Engineering)、微调 (Fine-tuning,FT)。他们都有自己独特的特点。根据对外部知识的依赖性和模型调整要求上的不同,各自有适合的场景。

RAG 就像给模型一本教科书,用于定制的信息检索,非常适合特定的查询。另一方面,FT 就像一个学生随着时间的推移内化知识,更适合模仿特定的结构、风格或格式。FT 可以通过增强基础模型知识、调整输出和教授复杂指令来提高模型的性能和效率。然而,它不那么擅长整合新知识或快速迭代新的用例。RAG 和 FT,并不是相互排斥的,它们可以是互补的,联合使用可能会产生最佳性能。

▲ 图5. RAG 与其他大模型微调技术对比

如何评价 RAG?

RAG 的评估方法多样,主要包括三个质量评分:上下文相关性、答案忠实性和答案相关性。此外,评估还涉及四个关键能力:噪声鲁棒性、拒答能力、信息整合和反事实鲁棒性。这些评估维度结合了传统量化指标和针对 RAG 特性的专门评估标准,尽管这些标准尚未统一。

在评估框架方面,存在如 RGB 和 RECALL 这样的基准测试,以及 RAGAS、ARES 和 TruLens 等自动化评估工具,它们有助于全面衡量 RAG 模型的表现。表中汇总了如何将传统量化指标应用于 RAG 评估以及各种 RAG 评估框架的评估内容,包括评估的对象、维度和指标,为深入理解 RAG 模型的性能和潜在应用提供了宝贵信息。

那么,如何系统的去学习大模型LLM?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~ , 【保证100%免费

在这里插入图片描述

篇幅有限,部分资料如下:

标签:检索,RAG,增强,范式,模型,深入探讨,技术,学习
From: https://blog.csdn.net/mama19971023/article/details/140397586

相关文章

  • 【大模型系列——解读RAG】_大模型rag是什么意思
    文末有福利!RAG是2023年最流行的基于LLM的应用系统架构。有许多产品几乎完全建立在RAG之上,覆盖了结合网络搜索引擎和LLM的问答服务,到成千上万个数据聊天的应用程序。很多人将RAG和Agent作为大模型应用的两种主流架构,但什么是RAG呢?RAG又涉及了哪些具体的技术呢?1.什......
  • Graphrag: Hello World !
    这两天抽空玩了一把 Graphrag, 记录一下测试步骤。 先决条件:    Python3.10-3.12  备注: 以下所有脚本都在PowerShell环境下运行1.首先安装一下 graphragpython包 pipinstall--trusted-hosthttps://mirrors.huaweicloud.com-ihttps://mirrors.h......
  • 王牌站士Ⅱ--针对 LLM/SLM 的高级 RAG
    前言检索增强生成(RAG)已成为一种增强语言模型能力的强大技术。通过检索和调整外部知识,RAG可让模型生成更准确、更相关、更全面的文本。RAG架构主要有三种类型:简单型、模块化和高级RAG:NaiveRAG采用GPT-3这样的单片模型,并简单地根据检索到的证据段落对其进行条件化......
  • 王牌站士Ⅳ--矢量数据库对 RAG 效率的影响
    前言近年来,检索增强生成(RAG)模型越来越受欢迎。RAG模型利用大型神经网络以及外部知识源的检索机制。这使得模型拥有的知识比其内部存储的更多,从而使其能够为广泛的主题和领域生成高质量的输出。影响RAG模型性能的关键因素之一是从外部源检索相关知识的效率。与优化程......
  • 编程范式之并发编程
    目录前言1.并发编程的定义2.并发编程的特点2.1任务交替执行2.2状态共享与同步2.3并行执行3.并发编程的适用场景3.1高性能计算3.2I/O密集型应用3.3实时系统4.并发编程的优点4.1提高资源利用率4.2缩短响应时间4.3提高系统吞吐量5.并发编程的缺点5.1编程......
  • 编程范式之面向切面编程(AOP)
    目录前言1.什么是面向切面编程2.面向切面编程的特点2.1模块化2.2动态代理2.3透明性3.适用于哪些场景3.1日志记录3.2事务管理3.3安全检查3.4性能监控4.面向切面编程的优点4.1提高代码的可维护性4.2提高代码的可重用性4.3提高系统的灵活性5.面向切面编程......
  • 时间序列分析论文翻译与笔记:The correct way to start an Exponential Moving Average
            在之前的笔记中,我们初步认识了指数移动平均(指数加权移动平均),本文将通过翻译一篇DavidOwen 在2017年的一篇博客,讨论如何确保移动平均数能够通过识别记录信息的时长,来适应新的信息。原文链接:点击这里(原文的代码为R,本文将补充py代码)目录如何正确地开始指数移......
  • AI推介-大语言模型LLMs之RAG(检索增强生成)论文速览(arXiv方向):2024.06.20-2024.07.01
    文章目录~1.AStudyonEffectofReferenceKnowledgeChoiceinGeneratingTechnicalContentRelevanttoSAPPhIREModelUsingLargeLanguageModel2.FromRAGtoRICHES:RetrievalInterlacedwithSequenceGeneration3.SK-VQA:SyntheticKnowledgeGeneration......
  • 论文分享|ACL2024|RAG相关论文简读
    本文通过简读ACL2024中RAG和检索相关且在谷歌学术已公开的21篇论文,追踪RAG的研究热点这里附上ACL2024论文列表链接:https://2024.aclweb.org/program/main_conference_papers/1.UnsupervisedInformationRefinementTrainingofLargeLanguageModelsforRetrieval-Augm......
  • 本地 AI RAG 系列之 使用 OpenLlama、Postgres、Node.js 和 Next.js 进行 100% 免费矢
    简介所以你想尝试向量搜索,但你不想付钱给OpenAI,或者使用Huggingface,也不想付钱给向量数据库公司。我来帮你。让我们在自己的机器上免费开始向量搜索吧。推荐文章《知识图谱大模型系列之01利用KeyBERT、HDBSCAN和Zephyr-7B-Beta构建知识图谱,LLM增强的自然语言处......