局域网(LAN)是在20世纪70年代末发展起来的,起初主要用于连接单位内部的计算机,使它们能够方便地共享各种硬件、软件和数据资源。局域网的主要特点是网络为一个单位所拥有,地理范围和站点数目均有限。
局域网技术在计算机网络中占有重要地位。最初,局域网比广域网具有较高的数据率、较低的时延和较小的误码率。但随着光纤技术在广域网中的普遍使用,现在广域网也具有很高的数据率和很低的误码率。
局域网的拓扑结构
局域网可按网络拓扑进行分类,主要有以下三种:
1. 星形网:
- 特点:由于集线器(Hub)的出现和双绞线的大量使用,星形以太网及多级星形结构的以太网获得了非常广泛的应用。
2. 环形网:
- 特点:如前面介绍的令牌环网。
3. 总线网:
- 特点:各站点直接连在总线上,总线两端的匹配电阻吸收在总线上传播的电磁波信号的能量,避免产生有害的电磁波反射。总线网以传统以太网最为著名。
局域网经过了三十多年的发展,尤其是在快速以太网(100Mbit/s)、吉比特以太网(1Gbit/s)和10吉比特以太网(10Gbit/s)相继进入市场后,以太网已经在局域网市场中占据了绝对优势。现在以太网几乎成了局域网的同义词。
局域网的传输媒体
局域网可使用多种传输媒体:
- 双绞线:最便宜,10Mbit/s、100Mbit/s乃至1Gbit/s的局域网都可使用双绞线。双绞线已成为局域网中的主流传输媒体。
- 光纤:当数据率很高时,往往需要使用光纤作为传输媒体。
局域网的体系结构
在局域网发展的初期,各种类型的网络相继出现,并且各自采用不同的网络拓扑和媒体接入控制技术。为了适应多种局域网标准,IEEE802委员会把局域网的数据链路层拆成两个子层:
- 逻辑链路控制(LLC)子层:与传输媒体无关。
- 媒体接入控制(MAC)子层:与接入传输媒体有关的内容都放在MAC子层。
网络适配器
网络适配器是计算机连接到局域网的重要设备。适配器有自己的处理器和存储器,是一个半自治的设备。适配器和局域网之间的通信通过电缆或双绞线以串行传输方式进行,而适配器和计算机之间的通信通过计算机主板上的I/O总线以并行传输方式进行。
适配器功能:进行数据串行传输和并行传输的转换,并缓存数据。
适配器的优点:适配器接收和发送帧时不使用计算机的CPU,不浪费主机的处理器和内存资源。
MAC地址
MAC地址是局域网上每台计算机的唯一标识符,固化在适配器的ROM中。MAC地址用于媒体接入控制,确保在同一个广播信道上实现两个站点的通信。
全球地址:IEEE802标准规定了48位的全球地址。
地址管理:IEEE的注册管理机构负责分配地址字段的6个字节中的前三个字节(OUI),后三个字节由厂家自行指派。
适配器的过滤功能:适配器从网络上每收到一个MAC帧就先用硬件检查MAC帧中的目的地址,如果是发往本站的帧则收下,否则将此帧丢弃。这包括:
- 单播帧:发往单个站点。
- 广播帧:发往所有站点。
- 多播帧:发往一部分站点。
适配器可设置为混杂方式,用于网络维护和管理。混杂方式的适配器能接收网络上所有传输的帧。
局域网的应用和发展
局域网在现代社会中有广泛的应用,不仅连接企业内部的计算机,还将企业、机构、校园中的大量用户接入互联网。网络中大部分的信息资源都集中在这些局域网中,广域网往往只是充当连接众多局域网的远程链路。
局域网技术的发展,不仅提升了数据传输的速度和稳定性,也促进了不同设备间的互联互通。从最初的资源共享到如今的大规模用户接入互联网,局域网的发展展示了其强大的生命力和适应性。
互联网与局域网的结合
现代局域网不仅限于内部使用,还与广域网(WAN)结合,将大量用户接入互联网。通过局域网,用户可以方便地访问全球的信息资源,同时也可以利用广域网实现远程办公、在线学习等功能。
局域网与广域网的结合,大大提升了网络的整体性能和用户体验。广域网作为连接众多局域网的远程链路,保证了数据的高效传输和可靠性。
局域网的未来发展
随着技术的不断进步,局域网将继续向更高的数据率、更低的时延和更强的安全性方向发展。未来,局域网可能会更多地采用光纤传输技术,以满足更高的数据传输需求。
局域网的应用场景也将更加广泛,从传统的办公环境扩展到智能家居、物联网等领域。局域网将在我们生活的各个方面发挥越来越重要的作用。
总结
局域网技术在计算机网络中扮演着重要角色,从最初的资源共享到如今的大规模用户接入互联网,局域网的发展展示了其强大的生命力和适应性。在未来,随着技术的进一步发展,局域网将继续为我们的工作和生活提供强有力的支持。
希望这篇文章能帮助你更好地了解局域网技术。如果你有任何问题或建议,欢迎在评论区留言。感谢你的阅读!
图文来源:《计算机网络教程》