1 import torch 2 3 # 1prepare dataset 4 # x,y是矩阵,3行1列 也就是说总共有3个数据,每个数据只有1个特征 5 x_data = torch.tensor([[1.0], [2.0], [3.0]]) 6 y_data = torch.tensor([[2.0], [4.0], [6.0]]) 7 8 # 2design model using class 9 """ 10 our model class should be inherit from nn.Module, which is base class for all neural network modules. 11 member methods __init__() and forward() have to be implemented 12 class nn.linear contain two member Tensors: weight and bias 13 class nn.Linear has implemented the magic method __call__(),which enable the instance of the class can 14 be called just like a function.Normally the forward() will be called 15 """ 16 class LinearModel(torch.nn.Module): 17 def __init__(self): 18 super(LinearModel, self).__init__() 19 # (1,1)是指输入x和输出y的特征维度,这里数据集中的x和y的特征都是1维的 20 # 该线性层需要学习的参数是w和b 获取w/b的方式分别是~linear.weight/linear.bias 21 self.linear = torch.nn.Linear(1, 1) 22 23 def forward(self, x): 24 y_pred = self.linear(x) 25 return y_pred 26 27 model = LinearModel() 28 29 # 3construct loss and optimizer 30 # criterion = torch.nn.MSELoss(size_average = False) 31 criterion = torch.nn.MSELoss(reduction='sum') 32 optimizer = torch.optim.SGD(model.parameters(), lr=0.01) # model.parameters()自动完成参数的初始化操作 33 34 # 4training cycle forward, backward, update 35 for epoch in range(100): 36 y_pred = model(x_data) # forward:predict 37 loss = criterion(y_pred, y_data) # forward: loss 38 print(epoch, loss.item()) 39 40 optimizer.zero_grad() # the grad computer by .backward() will be accumulated. so before backward, remember set the grad to zero 41 loss.backward() # backward: autograd,自动计算梯度 42 optimizer.step() # update 参数,即更新w和b的值 43 44 print('w = ', model.linear.weight.item()) 45 print('b = ', model.linear.bias.item()) 46 47 x_test = torch.tensor([[4.0]]) 48 y_test = model(x_test) 49 print('y_pred = ', y_test.data)
标签:__,linear,刘二,torch,第五,PyTorch,nn,model,class From: https://www.cnblogs.com/zhouyeqin/p/16811083.html