首页 > 其他分享 >AI绘图实践-用人工智能生图助力618大促

AI绘图实践-用人工智能生图助力618大促

时间:2024-07-09 20:52:55浏览次数:16  
标签:生图 618 迭代 AI 模型 生成 步数 图片

现在各种AI大模型大行其道,前有GhatGPT颠覆了我们对对话型AI的原有印象,后有Sora文生视频,让我们看到了利用AI进行创意创作的无限可能性。如今各大公司和团队都争相提出自己的大模型,各种网页端和软件应用也极大地降低了我们使用AI作为生产力的门槛。

我这次就为大家带来使用AI进行绘图的入门实践,为大促文章配图,绘制大促广告宣传海报,提升促销图的画质和精度,探索一下从这方面助力大促的新思路。

平台

现在的AI绘图主要用到的模型是SD(Stable Diffusion),它是一种稳定扩散模型,用于生成高质量的图像。这种模型是在传统的扩散模型DDPMs(Denoising Diffusion Probabilistic models)的基础上发展出来的。

 


 

经过多个版本的迭代和改进,这类模型已经能很好的执行“文生图”、“图生图”、“后期处理”等AI功能,甚至可以在一定程度上代替PhotoShop等图像处理软件的工作。

现在许多开发者都发布了基于SD模型的改进型模型,基本上所有的网页端和软件也都是基于此模型搭建的,要使用它进行AI绘画,主要有三种方法:

1.自己搭建基于SD的webui,在gitHub上有项目的源代码: https://github.com/AUTOMATIC1111/stable-diffusion-webui 。这种方式的优点是自由度高,可以根据自己的需求进行客制化改造,更新也最及时,但是要自己进行环境搭建,对于一般用户来说学习门槛较高,国内使用的话需要魔法,同时经过我的体验稳定性不高,经常会失败。

2.使用网页端应用,这类网站是基于stable-diffusion-webui 搭建的第三方平台,由他们负责维护和更新,并提供稳定的连接,用户只需要选择需要的模型和参数,输入提示词,就可以在线生成图片。

国内有:

Liblib Ai: https://www.liblib.art/

MJ: https://mj.wxcbh.cn/home/?from=AI05&strategy=drawing5&bd_vid=17724435435623318479#/mj

都不需要魔法 。

国外的像:Playground AI: https://playground.com/ ,每天有免费的体验次数,速度和质量也不错。

这类网站一般都有自己的模型市场,以供创作者们上传和下载自定义的模型,并且分享自己的绘图作品以及相关生图的参数,非常方便。但是一般都会收费,都会收费,都会收费,重要的事情说三遍。

3.PC端软件,这类软件一般也是基于SD模型进行封装,可以下载模型,设置参数并在本地生成图片,使用体验类似于PS等图片处理软件,但是由于整个生成过程在本地执行,比较依赖于本机算力,电脑性能不好的话生成会很慢,但是好处就是自定义程度相对较高,而且一般免费。

生图软件

我这次主要介绍软件的途径,使用的软件就是这款Draw Things,Mac端App Store免费下载,不需要魔法

 


 

他的界面是这样的:

 

参数设置区用于选择模型,采集器,步数和随机种子等参数,首次生成图片首先选择“文本到图像”模式。在这里我大致介绍一下涉及到的名词:

 

模型

模型是AI绘画的基础,一般的模型都是基于SD改进的,SD模型也有V1.0、V1.5、V2.0、V2.1等不同的迭代版本,不同的模型可以生成不同风格的图片,可以根据自己的需要进行选择,模型可以在DrawThings里进行下载和选择,当然也可以在Liblib Ai等网站上下载然后导入。

 


 

模型分为几个主要的种类:

chekpoint(检查点)

它是完整模型的常见格式,模型体积较大,一般真人版的单个模型的大小在7GB左右,动漫版的在2-5个G之间。决定了图片的整体风格。chekpoint的后缀名是safetensors

 


 

有写实,科幻,漫画,广告等等风格

Lora

是一种体积较小的绘画模型,是对大模型的微调。可以添加Lora为图片创造更丰富的表现形式。与每次作画只能选择一个大模型不同,lora模型可以在已选择大模型的基础上添加一个甚至多个。一般体积在几十到几百兆左右。

Lora的后缀名也是safetensors,所以在安装的时候要注意,Lora要在规定的地方导入:

 


 

Hypernetwork(超网络)

类似 LoRA ,但模型效果不如 LoRA,不能单独使用,需要搭配大模型使用

 

采样器

采样器也会在一定程度上影响图画风格,不同于模型,它一般是基于算法。选择对的采样器对于生成图片的质量至关重要,下面介绍一些主流的采样器类型:

DDIM和PLMS是早期SD专为扩散模型而设计的采样器。DPM和DPM++系列是专为扩散模型而设计的新型采样器。DPM++是DPM的改进版。

Euler a 比较适用于图标设计、二次元图像、小型场景等简单的图像数据生成场景。

DPM和DPM++系列非常适用于三维景象和复杂场景的描绘,例如写实人像。

Karras系列是专为扩散模型而设计的改进版采样器,有效提升了图片质量。

Euler a,DPM2 a, DPM++2S a和DPM++2S a Karras适合给图片增加创造性,随着迭代步数的提升,图片也会随之变化。不同的采样方法可能对不同的模型产生不同的影响,会影响生成图片的艺术风格,建议结合模型和迭代步数多做尝试。

步数

生图时,去噪重复的步数被称为采样迭代步数。

测试新的模型或Prompts效果时,迭代步数推荐使用10~15,可以快速获得结果,方便进行调整。当迭代步数太低时,生成的图像几乎无法呈现内容。20 ~ 30之间的迭代步数通常会有不错的效果。40步以上的迭代步数会需要更长的生图时间,但收益可能有限,除非在绘制动物毛发或皮肤纹理等。

过低或过高的初始分辨率都可能会让SD生图时无法正常发挥,建议参考基础模型的分辨率,配置合适的初始宽高

随机种子

随机种子会影响生图时的初始噪声图像。

当Seed=-1时,表示每次出图都会随机一个种子,使得每次生成的图都会不同。其他创作者上传图片的时候,一般会附带此图片对应的随机种子,可以参考它来生成类似的图片。点击可以生成一个随机的种子,长按则可以输入特定的随机种子。

提示词

提示词是生成图片时关键中的关键,它直接决定了图片内容,画面风格,场景,表情动作等一些列内容,在生成图片时,选择合适的提示词至关重要。

 


 

提示词分为“正向提示词”和“反向提示词”,“正向提示词”代表你想要在图片中呈现的内容,反之“反向提示词”则是不想要在图片里具备的要素。

比如,我想要画一张“618西瓜大促”相关的宣传图,我就可以这样描述:

“许多人在湖里流动的水边吃西瓜,高质量的微型摄影”,翻译成英文:“Many people eat watermelons by the flowing water in the lake, with high-quality miniature photography”

将这段文字输入DrawThings的文本框,它会自动把整句话拆分成一个个提示词。

 

当然,我们也可以直接填入想要绘制的提示词:

 


 

如上图所示,如果我们想着重强调某一个提示词,让AI绘制的时候更偏重一这一特征,就可以用括号把它包起来,然后在后面注明权重,这里我就把西瓜(watermelon)加重到了1.5权重,以便更加突出这一点。

“反向提示词”一般有:低质量,不适合上班时间浏览(NSFW),描绘人物的时候,糟糕的眼睛,多余的手指,扭曲,变形等等

 


 

其他

还有一些其他的参数,比如图片分辨率和比例,文本指导强度(越高越忠实呈现文本内容),以及一次生成的图片数量等等

 

设置好一切,就可以开始生成图片了,可以多尝试几张,从中挑选最合适的进行二次处理。

 


 

 

二次处理

如果对生成的图片有些细节不满意,可以利用“图像到图像”模式,然后选择强度。高分辨率修复的重绘强度为0时不会改变原图,30% 以下会基于原图稍微修正,超过 70% 会对原图做出较大改变,1 会得到一个完全不同的图像。

二次处理主要包括以下几个目的:

重绘图像元素

如果对图像中某部分的元素不满意,可以用“橡皮擦”擦除该部分,然后重新生成,让模型自动将擦数的部分重绘,甚至可以消除某部分图像元素,实测效果甚至好于PS。

 


 

扩图

对于一张图片,如果想要扩展边界部分,让模型绘制出额外的内容,可以首先重新设置图片的宽高。我这里原是图片是1088*2048,想要扩展左侧湖里的景象,就可以先将图片宽度增加到1536,然后移动图片到右侧贴紧图层边缘。然后最关键的一步,用“橡皮擦”工具,沿着想要扩展的那一边,细细的擦一道,这么做的目的是告诉模型,从这一部分开始重绘,风格要按照擦除的这部分来进行,然后重新生成图片。

 


 

提升画质

最开始生成图片时,为了提高速度和效率,可以适当降低分辨率,的到合适的图片以后,可以重设分辨率和清晰度,重绘图片,达到提升画质的目的。当然,对于已经已经画好的第三方图片,也可以加载进来进行处理。

好了,本篇利用AI绘图进行实践的文章就介绍到这里,希望能够帮助到大家。在以后大促文章配图,和大促海报绘制方面为大家提供便利,助力618大促再创新高!

标签:生图,618,迭代,AI,模型,生成,步数,图片
From: https://www.cnblogs.com/Jcloud/p/18292724

相关文章

  • AI对当前及以后的环境分析
    生成式人工智能(AIGC)在软件开发领域确实带来了深远的影响,但其作用更多地是作为开发者的辅助工具,而非取代他们。以下是几点关于AI在软件开发中的角色和影响:方向一:AI工具现状        辅助开发工具:AI在代码生成、错误检测、自动化测试等方面发挥了重要作用。例如,AI可以......
  • OpenDevin 简介:一个有抱负的 AI 驱动的软件开发平台
    来源链接:https://medium.com/ai-advances/introduction-to-opendevin-the-aspiring-ai-powered-software-development-platform-11ffc69e60cc发布时间:2024-05-05T00:40:39.078ZOpenDevin是一个创新的开源项目,旨在通过引入一个自主的AI软件工程师来彻底改变软件开发。这个AI......
  • Failed to configure a DataSource: 'url' attribute is not specified and no embe..
    原文链接: https://www.cnblogs.com/javawxid/p/10949511.html问题原因:Mybatis没有找到合适的加载类,其实是大部分spring-datasource-url没有加载成功,分析原因如下所示.DataSourceAutoConfiguration会自动加载.没有配置spring-datasource-url 属性.spring......
  • 面壁智能发布端侧 AI 应用开发平台;快手推出肖像动画技术 LivePortrait丨 RTE 开发者日
      开发者朋友们大家好: 这里是「RTE开发者日报」,每天和大家一起看新闻、聊八卦。我们的社区编辑团队会整理分享RTE(Real-TimeEngagement)领域内「有话题的新闻」、「有态度的观点」、「有意思的数据」、「有思考的文章」、「有看点的会议」,但内容仅代表编辑的个人观点,......
  • 【融合ChatGPT等AI模型】Python-GEE遥感云大数据分析、管理与可视化
    随着航空、航天、近地空间遥感平台的持续发展,遥感技术近年来取得显著进步。遥感数据的空间、时间、光谱分辨率及数据量均大幅提升,呈现出大数据特征。这为相关研究带来了新机遇,但同时也带来巨大挑战。传统的工作站和服务器已无法满足大区域、多尺度海量遥感数据处理需求。为解......
  • hackmyvm-airbind
    环境靶机ip:未知攻击机kali:ip1:192.168.96.59ip2:192.168.56.103主机探测arp-scan-l发现了56.104这个机子应该就是我们的靶机,接下来先对其进行端口扫描端口扫描发现开放了80端口,但是22端口状态显示为filtered,不知道开放还是关闭访问80端口,发现是wallos的管理系统使用......
  • spark程序在hdfs集群执行,提示: “main“ org.apache.spark.SparkException: Failed to
    1.执行代码spark在hadoop上以集群模式执行代码bin/spark-submit\--masteryarn\--deploy-modecluster\--executor-memory1G\--total-executor-cores2\/root/word_count_cluster.py2.错误截图错误原因:找不到spark目录3.解决办法在/etc/profile文件中配置spa......
  • 探索Google AI Studio的无限可能:从设计到代码的全新体验
    探索GoogleAIStudio的无限可能:从设计到代码的全新体验在2024年的GoogleI/O开发者大会上,Google展示了一项令人兴奋的实时演示:Gemini能够将应用程序UI的线框草图转换为JetpackCompose代码,直接在AndroidStudio中进行。这一功能基于Gemini的核心能力,虽然我们仍在不断优化......
  • 将metabase中的/auth/login替换为/daip/common/toLogin
    将metabase中的/auth/login替换为/daip/common/toLoginmetabase-0.31.2\frontend\src\metabase\routes.jsx109行修改为/auth/logout181行修改为/daip/common/toLoginmetabase-0.31.2\frontend\src\metabase\auth\components\BackToLogin.jsx第6行修改为/daip/common/toL......
  • 【一步步开发AI运动小程序】十九、运动识别中如何解析RGBA帧图片?
    引言最近有不少开发者向我们咨询,像体测、赛事等应用场景中,需要保存运动过程的图像,如何将相机抽取的RGBA帧图像解析成.jpg或.png格式的图像?今天我们就为您介绍相应的解决方案。一、RGBA图像结构。RGBA图像为一维数组,每四个元素描写一个图像像素,前三元素为颜色值,第四个元素为透......