文章目录
在实际应用中,大语言模型对于长文本数据的处理需求日益凸显,尤其在长文档分析、多轮对话、故事创作等场景下。在这些情况下,模型需要处理的文本的长度常常超出预定义上下文窗口大小。例如,LLaMA-2 的上下文窗口限制为 4,096个词元。为了支持长文本处理,多家机构均已推出面向具有超长上下文窗口的大语言模型或 API。例如,OpenAI 发布了支持 128K 上下文窗口的 GPT-4 Turbo,而Anthropic 则推出了具有 200K 上下文窗口的 Claude-2.1。给定一个预训练后的大语言模型,如何有效拓展其上下文窗口以应对更长的文本数据成为当前学术界的研究焦点。目前,增强大语言模型长文本建模能力的研究主要集中在两个方向:一是扩展位置编码,二是调整上下文窗口。
扩展位置编码
在基于 Transformer 架构的大语言模型中,模型的上下文建模能力通常受到训练集中文本数据长度分布的限制。一旦超出这个分布范围,模型的位置编码往往无法得到充分训练,从而导致模型处理长文本的性能下降。因此,当大语言模型面临超出其最大训练长度的任务时,需要对于位置编码进行扩展,以适应更长的绝对或相对位置。
实际上,某些特定的位置编码在超出原始上下文窗口的文本上,也能够表现出较好的建模能力,这种能力通常被称为外推(Extrapolation)能力。在已有的基于相对位置的位置编码方法中,T5 偏置、ALiBi以及 xPos等方法都展现出了不同程度的外推能力。值得注意的是,尽管这种外推能力可以确保模型在长文本上继续生成流畅的文本,但模型对长文本本身的理解能力可能无法达到与短文本相同的水平。为了真正增强长文本建模能力,通常还需要在更长的文本上进行一定的训练。
然而&
标签:编码,文本,窗口,模型,位置,上下文 From: https://blog.csdn.net/weixin_43961909/article/details/140265828