源码:
import torch
import torchvision as tv
from torch.utils import data
import matplotlib.pyplot as plt
import time
def get_fashion_mnist_labels(labels):
text_labels = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
return [text_labels[int(i)] for i in labels]
def show_fashion_mnist(imgs, num_rows, num_cols, titles=None, scale=0.5):
figsize = (num_cols*scale, num_rows*scale)
_, axes = plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i,(ax, img) in enumerate(zip(axes, imgs)):
if torch.is_tensor(img):
ax.imshow(img.numpy())
else:
ax.imshow(img)
ax.axis('off')
if titles:
ax.set_title(titles[i])
plt.show()
return axes
def get_dataloader_workers(): #@save
"""使用4个进程来读取数据"""
return 4
def load_data_fashion_mnist(batch_size, resize=None):
trans = [tv.transforms.ToTensor()] # 创建一个将图像转换为张量的变换
if resize:
trans.insert(0, tv.transforms.Resize(resize))
trans = tv.transforms.Compose(trans)
mnist_train = tv.datasets.FashionMNIST(root='./data', train=True, download=True, transform=trans) # 加载FashionMNIST训练数据集,并应用变换
mnist_test = tv.datasets.FashionMNIST(root='./data', train=False, download=True, transform=trans) # 加载FashionMNIST测试数据集,并应用变换
return (data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers()),
data.DataLoader(mnist_test, batch_size, shuffle=False, num_workers=get_dataloader_workers()))
def softmax(X):
X_exp = torch.exp(X)
partition = X_exp.sum(1,keepdim=True)
return X_exp / partition
def net(X):
return softmax(torch.matmul(X.reshape(-1, W.shape[0]), W) +b)
def cross_entropy(y_hat, y):
return -torch.log(y_hat[range(len(y_hat)), y])
def accuracy(y_hat, y):
if len(y_hat.shape)>1 and y_hat.shape[1]>1:
y_hat = y_hat.argmax(axis=1)
cmp = y_hat.type(y.dtype) == y
return float(cmp.type(y.dtype).sum())
def evaluate_accuracy(net, data_iter):
if isinstance(net, torch.nn.Module):
net.eval() # 评估模式, 这会关闭dropout
metric = Accumulator(2) # 正确预测数、预测总数
with torch.no_grad():
for X, y in data_iter:
metric.add(accuracy(net(X), y), y.numel())
return metric[0]/metric[1]
def sgd(params, lr, batch_size): #@save
"""小批量随机梯度下降"""
with torch.no_grad():
for param in params:
param -= lr * param.grad / batch_size
param.grad.zero_()
def updater(batch_size):
return sgd([W, b], lr, batch_size)
class Accumulator: #@save
"""在n个变量上累加"""
def __init__(self, n):
self.data = [0.0] * n #self.data 是一个列表,初始化为 n 个 0.0,用于存储累加的值。
def add(self, *args):
self.data = [a + float(b) for a, b in zip(self.data, args)] #一个列表推导式,它遍历每一对 (a, b),并将 a 和 b 相加的结果生成一个新的列表。
def reset(self):
self.data = [0.0] * len(self.data)
def __getitem__(self, idx):
return self.data[idx]
def train_epoch_ch3(net, train_iter, loss, updater): #@save
"""训练模型一个迭代周期(定义见第3章)"""
# 将模型设置为训练模式
if isinstance(net, torch.nn.Module):
net.train()
# 训练损失总和、训练准确度总和、样本数
metric = Accumulator(3)
for X, y in train_iter:
# 计算梯度并更新参数
y_hat = net(X)
l = loss(y_hat, y)
if isinstance(updater, torch.optim.Optimizer):
# 使用PyTorch内置的优化器和损失函数
updater.zero_grad()
l.mean().backward()
updater.step()
else:
# 使用定制的优化器和损失函数
l.sum().backward()
updater(X.shape[0])
metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
# 返回训练损失和训练精度
return metric[0] / metric[2], metric[1] / metric[2]
def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater): #@save
"""训练模型(定义见第3章)"""
for epoch in range(num_epochs):
train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
test_acc = evaluate_accuracy(net, test_iter)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f' % ( epoch + 1, train_metrics[0], train_metrics[1], test_acc))
def predict_ch3(net, test_iter, n=6): #@save
for X, y in test_iter:
break
trues = get_fashion_mnist_labels(y)
preds = get_fashion_mnist_labels(net(X).argmax(axis=1))
titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
show_fashion_mnist(X[:n].reshape(-1,28,28), 1, n, titles[:n])
if __name__ == '__main__':
batch_size = 256
train_iter, test_iter = load_data_fashion_mnist(batch_size)
num_inputs = 784
num_outputs = 10
W = torch.normal(0, 0.1, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)
lr = 0.1
num_epochs = 10
loss = cross_entropy
# updater = lambda batch_size: sgd([W, b], lr, batch_size)
train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)
predict_ch3(net, test_iter)
另外感慨一下MNIST数据集下载速度真是比CIFAR快太多了
标签:train,回归,iter,num,softmax,MNIST,net,data,def From: https://www.cnblogs.com/bozhi233/p/18287897