首页 > 其他分享 >7.3

7.3

时间:2024-07-03 22:55:57浏览次数:12  
标签:下标 nums int 7.3 result dp 贪心

题目分类大纲如下:

贪心算法大纲

算法公开课

《代码随想录》算法视频公开课 (opens new window)贪心算法理论基础! (opens new window),相信结合视频再看本篇题解,更有助于大家对本题的理解

什么是贪心

贪心的本质是选择每一阶段的局部最优,从而达到全局最优

这么说有点抽象,来举一个例子:

例如,有一堆钞票,你可以拿走十张,如果想达到最大的金额,你要怎么拿?

指定每次拿最大的,最终结果就是拿走最大数额的钱。

每次拿最大的就是局部最优,最后拿走最大数额的钱就是推出全局最优。

再举一个例子如果是有一堆盒子,你有一个背包体积为n,如何把背包尽可能装满,如果还每次选最大的盒子,就不行了。这时候就需要动态规划。动态规划的问题在下一个系列会详细讲解。

贪心的套路(什么时候用贪心)

很多同学做贪心的题目的时候,想不出来是贪心,想知道有没有什么套路可以一看就看出来是贪心。

说实话贪心算法并没有固定的套路

所以唯一的难点就是如何通过局部最优,推出整体最优。

那么如何能看出局部最优是否能推出整体最优呢?有没有什么固定策略或者套路呢?

不好意思,也没有! 靠自己手动模拟,如果模拟可行,就可以试一试贪心策略,如果不可行,可能需要动态规划。

有同学问了如何验证可不可以用贪心算法呢?

最好用的策略就是举反例,如果想不到反例,那么就试一试贪心吧

可有有同学认为手动模拟,举例子得出的结论不靠谱,想要严格的数学证明。

一般数学证明有如下两种方法:

  • 数学归纳法
  • 反证法

看教课书上讲解贪心可以是一堆公式,估计大家连看都不想看,所以数学证明就不在我要讲解的范围内了,大家感兴趣可以自行查找资料。

面试中基本不会让面试者现场证明贪心的合理性,代码写出来跑过测试用例即可,或者自己能自圆其说理由就行了

举一个不太恰当的例子:我要用一下1+1 = 2,但我要先证明1+1 为什么等于2。严谨是严谨了,但没必要。

虽然这个例子很极端,但可以表达这么个意思:刷题或者面试的时候,手动模拟一下感觉可以局部最优推出整体最优,而且想不到反例,那么就试一试贪心

例如刚刚举的拿钞票的例子,就是模拟一下每次拿做大的,最后就能拿到最多的钱,这还要数学证明的话,其实就不在算法面试的范围内了,可以看看专业的数学书籍!

所以这也是为什么很多同学通过(accept)了贪心的题目,但都不知道自己用了贪心算法,因为贪心有时候就是常识性的推导,所以会认为本应该就这么做!

那么刷题的时候什么时候真的需要数学推导呢?

例如这道题目:链表:环找到了,那入口呢? (opens new window),这道题不用数学推导一下,就找不出环的起始位置,想试一下就不知道怎么试,这种题目确实需要数学简单推导一下。

贪心一般解题步骤

[!TIP]

贪心算法一般分为如下四步:

  • 将问题分解为若干个子问题
  • 找出适合的贪心策略
  • 求解每一个子问题的最优解
  • 将局部最优解堆叠成全局最优解

这个四步其实过于理论化了,我们平时在做贪心类的题目 很难去按照这四步去思考,真是有点“鸡肋”。

做题的时候,只要想清楚 局部最优 是什么,如果推导出全局最优,其实就够了。

总结

[!IMPORTANT]

本篇给出了什么是贪心以及大家关心的贪心算法固定套路。

不好意思了,贪心没有套路,说白了就是常识性推导加上举反例

最后给出贪心的一般解题步骤,大家可以发现这个解题步骤也是比较抽象的,不像是二叉树,回溯算法,给出了那么具体的解题套路和模板。


455.分发饼干

题意描述:

​ [!NOTE]

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

示例 1:

输入: g = [1,2,3], s = [1,1]
输出: 1
解释: 
你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。
虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。
所以你应该输出1。

示例 2:

输入: g = [1,2], s = [1,2,3]
输出: 2
解释: 
你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。
你拥有的饼干数量和尺寸都足以让所有孩子满足。
所以你应该输出2.

提示:

  • 1 <= g.length <= 3 * 104
  • 0 <= s.length <= 3 * 104
  • 1 <= g[i], s[j] <= 2^31 - 1

思路:

[!TIP]

为了满足更多的小孩,就不要造成饼干尺寸的浪费。

大尺寸的饼干既可以满足胃口大的孩子也可以满足胃口小的孩子,那么就应该优先满足胃口大的。

这里的局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩

可以尝试使用贪心策略,先将饼干数组和小孩数组排序。

然后从后向前遍历小孩数组,用大饼干优先满足胃口大的,并统计满足小孩数量。

如图:

img

这个例子可以看出饼干 9 只有喂给胃口为 7 的小孩,这样才是整体最优解,并想不出反例,那么就可以撸代码了。

C++代码整体如下:

// 版本一
class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(), g.end());
        sort(s.begin(), s.end());
        int index = s.size() - 1; // 饼干数组的下标
        int result = 0;
        for (int i = g.size() - 1; i >= 0; i--) { // 遍历胃口
            if (index >= 0 && s[index] >= g[i]) { // 遍历饼干
                result++;
                index--;
            }
        }
        return result;
    }
};
  • 时间复杂度:O(nlogn)
  • 空间复杂度:O(1)

从代码中可以看出我用了一个 index 来控制饼干数组的遍历,遍历饼干并没有再起一个 for 循环,而是采用自减的方式,这也是常用的技巧。

有的同学看到要遍历两个数组,就想到用两个 for 循环,那样逻辑其实就复杂了。

注意事项

注意版本一的代码中,可以看出来,是先遍历的胃口,在遍历的饼干,那么可不可以 先遍历 饼干,在遍历胃口呢?

其实是不可以的。

外面的 for 是里的下标 i 是固定移动的,而 if 里面的下标 index 是符合条件才移动的。

如果 for 控制的是饼干, if 控制胃口,就是出现如下情况 :

img

if 里的 index 指向 胃口 10, for 里的 i 指向饼干 9,因为 饼干 9 满足不了 胃口 10,所以 i 持续向前移动,而 index 走不到s[index] >= g[i] 的逻辑,所以 index 不会移动,那么当 i 持续向前移动,最后所有的饼干都匹配不上。

所以 一定要 for 控制 胃口,里面的 if 控制饼干。

其他思路

也可以换一个思路,小饼干先喂饱小胃口

代码如下:

class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(),g.end());
        sort(s.begin(),s.end());
        int index = 0;
        for(int i = 0; i < s.size(); i++) { // 饼干
            if(index < g.size() && g[index] <= s[i]){ // 胃口
                index++;
            }
        }
        return index;
    }
};
  • 时间复杂度:O(nlogn)
  • 空间复杂度:O(1)

细心的录友可以发现,这种写法,两个循环的顺序改变了,先遍历的饼干,在遍历的胃口,这是因为遍历顺序变了,我们是从小到大遍历。

理由在上面 “注意事项”中 已经讲过。

总结

这道题是贪心很好的一道入门题目,思路还是比较容易想到的。

文中详细介绍了思考的过程,想清楚局部最优,想清楚全局最优,感觉局部最优是可以推出全局最优,并想不出反例,那么就试一试贪心


376. 摆动序列

题意描述:

[!WARNING]

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。

  • 例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。
  • 相反,[1, 4, 7, 2, 5][1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。

给你一个整数数组 nums ,返回 nums 中作为 摆动序列最长子序列的长度

示例 1:

输入:nums = [1,7,4,9,2,5]
输出:6
解释:整个序列均为摆动序列,各元素之间的差值为 (6, -3, 5, -7, 3) 。

示例 2:

输入:nums = [1,17,5,10,13,15,10,5,16,8]
输出:7
解释:这个序列包含几个长度为 7 摆动序列。
其中一个是 [1, 17, 10, 13, 10, 16, 8] ,各元素之间的差值为 (16, -7, 3, -3, 6, -8) 。

示例 3:

输入:nums = [1,2,3,4,5,6,7,8,9]
输出:2

提示:

  • 1 <= nums.length <= 1000
  • 0 <= nums[i] <= 1000

进阶:你能否用 O(n) 时间复杂度完成此题?

思路:

[!TIP]

思路 1(贪心解法)

本题要求通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。

相信这么一说吓退不少同学,这要求最大摆动序列又可以修改数组,这得如何修改呢?

来分析一下,要求删除元素使其达到最大摆动序列,应该删除什么元素呢?

用示例二来举例,如图所示:

376.摆动序列

局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值

整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列

局部最优推出全局最优,并举不出反例,那么试试贪心!

(为方便表述,以下说的峰值都是指局部峰值)

实际操作上,其实连删除的操作都不用做,因为题目要求的是最长摆动子序列的长度,所以只需要统计数组的峰值数量就可以了(相当于是删除单一坡度上的节点,然后统计长度)

这就是贪心所贪的地方,让峰值尽可能的保持峰值,然后删除单一坡度上的节点

在计算是否有峰值的时候,大家知道遍历的下标 i ,计算 prediff(nums[i] - nums[i-1])curdiff(nums[i+1] - nums[i]),如果prediff < 0 && curdiff > 0 或者 prediff > 0 && curdiff < 0 此时就有波动就需要统计。

这是我们思考本题的一个大体思路,但本题要考虑三种情况:

  1. 情况一:上下坡中有平坡
  2. 情况二:数组首尾两端
  3. 情况三:单调坡中有平坡

情况一:上下坡中有平坡

例如 [1,2,2,2,1]这样的数组,如图:

img

它的摇摆序列长度是多少呢? 其实是长度是 3,也就是我们在删除的时候 要不删除左面的三个 2,要不就删除右边的三个 2。

如图,可以统一规则,删除左边的三个 2:

img

在图中,当 i 指向第一个 2 的时候,prediff > 0 && curdiff = 0 ,当 i 指向最后一个 2 的时候 prediff = 0 && curdiff < 0

如果我们采用,删左面三个 2 的规则,那么 当 prediff = 0 && curdiff < 0 也要记录一个峰值,因为他是把之前相同的元素都删掉留下的峰值。

所以我们记录峰值的条件应该是: (preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0),为什么这里允许 prediff == 0 ,就是为了 上面我说的这种情况。

情况二:数组首尾两端

所以本题统计峰值的时候,数组最左面和最右面如何统计呢?

题目中说了,如果只有两个不同的元素,那摆动序列也是 2。

例如序列[2,5],如果靠统计差值来计算峰值个数就需要考虑数组最左面和最右面的特殊情况。

因为我们在计算 prediff(nums[i] - nums[i-1])curdiff(nums[i+1] - nums[i])的时候,至少需要三个数字才能计算,而数组只有两个数字。

这里我们可以写死,就是 如果只有两个元素,且元素不同,那么结果为 2。

不写死的话,如何和我们的判断规则结合在一起呢?

可以假设,数组最前面还有一个数字,那这个数字应该是什么呢?

之前我们在 讨论 情况一:相同数字连续 的时候, prediff = 0 curdiff < 0 或者 >0 也记为波谷。

那么为了规则统一,针对序列[2,5],可以假设为[2,2,5],这样它就有坡度了即 preDiff = 0,如图:

376.摆动序列1

针对以上情形,result 初始为 1(默认最右面有一个峰值),此时curDiff > 0&& preDiff <= 0,那么 result++(计算了左面的峰值),最后得到的 result 就是 2(峰值个数为 2 即摆动序列长度为 2)

经过以上分析后,我们可以写出如下代码:

  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

此时大家是不是发现 以上代码提交也不能通过本题?

所以此时我们要讨论情况三!

情况三:单调坡度有平坡

在版本一中,我们忽略了一种情况,即 如果在一个单调坡度上有平坡,例如[1,2,2,2,3,4],如图:

img

图中,我们可以看出,版本一的代码在三个地方记录峰值,但其实结果因为是 2,因为 单调中的平坡 不能算峰值(即摆动)。

之所以版本一会出问题,是因为我们实时更新了 prediff

那么我们应该什么时候更新 prediff 呢?

我们只需要在 这个坡度 摆动变化的时候,更新 prediff 就行,这样 prediff 在 单调区间有平坡的时候 就不会发生变化,造成我们的误判。

所以本题的最终代码为:

// 版本二
class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        if (nums.size() <= 1) return nums.size();
        int curDiff = 0; // 当前一对差值
        int preDiff = 0; // 前一对差值
        int result = 1;  // 记录峰值个数,序列默认序列最右边有一个峰值
      //计算curDiff用到nums[i + 1],因此遍历到倒数第二个数停止 
      for (int i = 0; i < nums.size() - 1; i++) {
            curDiff = nums[i + 1] - nums[i];
            // 出现峰值
            if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) {
                result++;
                preDiff = curDiff; // 注意这里,只在摆动变化的时候更新prediff
            }
        }
        return result;
    }
};

其实本题看起来好像简单,但需要考虑的情况还是很复杂的,而且很难一次性想到位。

本题异常情况的本质,就是要考虑平坡, 平坡分两种,一个是 上下中间有平坡,一个是单调有平坡,如图:

img

思路 2(动态规划)

考虑用动态规划的思想来解决这个问题。

很容易可以发现,对于我们当前考虑的这个数,要么是作为山峰(即 nums[i] > nums[i-1]),要么是作为山谷(即 nums[i] < nums[i - 1])。

  • 设 dp 状态dp[i][0],表示考虑前 i 个数,第 i 个数作为山峰的摆动子序列的最长长度
  • 设 dp 状态dp[i][1],表示考虑前 i 个数,第 i 个数作为山谷的摆动子序列的最长长度

则转移方程为:

  • dp[i][0] = max(dp[i][0], dp[j][1] + 1),其中0 < j < inums[j] < nums[i],表示将 nums[i]接到前面某个山谷后面,作为山峰。
  • dp[i][1] = max(dp[i][1], dp[j][0] + 1),其中0 < j < inums[j] > nums[i],表示将 nums[i]接到前面某个山峰后面,作为山谷。

初始状态:

由于一个数可以接到前面的某个数后面,也可以以自身为子序列的起点,所以初始状态为:dp[0][0] = dp[0][1] = 1

C++代码如下:

class Solution {
public:
    int dp[1005][2];
    int wiggleMaxLength(vector<int>& nums) {
        memset(dp, 0, sizeof dp);
        dp[0][0] = dp[0][1] = 1;
        for (int i = 1; i < nums.size(); ++i) {
            dp[i][0] = dp[i][1] = 1;
            for (int j = 0; j < i; ++j) {
                if (nums[j] > nums[i]) dp[i][1] = max(dp[i][1], dp[j][0] + 1);
            }
            for (int j = 0; j < i; ++j) {
                if (nums[j] < nums[i]) dp[i][0] = max(dp[i][0], dp[j][1] + 1);
            }
        }
        return max(dp[nums.size() - 1][0], dp[nums.size() - 1][1]);
    }
};
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(n)

进阶

可以用两棵线段树来维护区间的最大值

  • 每次更新dp[i][0],则在tree1nums[i]位置值更新为dp[i][0]
  • 每次更新dp[i][1],则在tree2nums[i]位置值更新为dp[i][1]
  • 则 dp 转移方程中就没有必要 j 从 0 遍历到 i-1,可以直接在线段树中查询指定区间的值即可。

时间复杂度:O(nlog n)

空间复杂度:O(n)


53. 最大子序和

题意描述:

[!NOTE]

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

提示:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104

进阶:如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的 分治法 求解。

思路:

[!TIP]

暴力解法

暴力解法的思路,第一层 for 就是设置起始位置,第二层 for 循环遍历数组寻找最大值

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int result = INT32_MIN;
        int count = 0;
        for (int i = 0; i < nums.size(); i++) { // 设置起始位置
            count = 0;
            for (int j = i; j < nums.size(); j++) { // 每次从起始位置i开始遍历寻找最大值
                count += nums[j];
                result = count > result ? count : result;
            }
        }
        return result;
    }
};
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(1)

以上暴力的解法 C++勉强可以过,其他语言就不确定了。

贪心解法

贪心贪的是哪里呢?

如果 -2 1 在一起,计算起点的时候,一定是从 1 开始计算,因为负数只会拉低总和,这就是贪心贪的地方!

局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。

全局最优:选取最大“连续和”

局部最优的情况下,并记录最大的“连续和”,可以推出全局最优

从代码角度上来讲:遍历 nums,从头开始用 count 累积,如果 count 一旦加上 nums[i]变为负数,那么就应该从 nums[i+1]开始从 0 累积 count 了,因为已经变为负数的 count,只会拖累总和。

这相当于是暴力解法中的不断调整最大子序和区间的起始位置

那有同学问了,区间终止位置不用调整么? 如何才能得到最大“连续和”呢?

区间的终止位置,其实就是如果 count 取到最大值了,及时记录下来了。例如如下代码:

if (count > result) result = count;

这样相当于是用 result 记录最大子序和区间和(变相的算是调整了终止位置)

如动画所示:

53.最大子序和

红色的起始位置就是贪心每次取 count 为正数的时候,开始一个区间的统计。

那么不难写出如下 C++代码(关键地方已经注释)

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int result = INT32_MIN;
        int count = 0;
        for (int i = 0; i < nums.size(); i++) {
            count += nums[i];
            if (count > result) { // 取区间累计的最大值(相当于不断确定最大子序终止位置)
                result = count;
            }
            if (count <= 0) count = 0; // 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
        }
        return result;
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

当然题目没有说如果数组为空,应该返回什么,所以数组为空的话返回啥都可以了。

#常见误区

误区一:

不少同学认为 如果输入用例都是-1,或者 都是负数,这个贪心算法跑出来的结果是 0, 这是又一次证明脑洞模拟不靠谱的经典案例,建议大家把代码运行一下试一试,就知道了,也会理解 为什么 result 要初始化为最小负数了。

误区二:

大家在使用贪心算法求解本题,经常陷入的误区,就是分不清,是遇到 负数就选择起始位置,还是连续和为负选择起始位置。

在动画演示用,大家可以发现, 4,遇到 -1 的时候,我们依然累加了,为什么呢?

因为和为 3,只要连续和还是正数就会 对后面的元素 起到增大总和的作用。 所以只要连续和为正数我们就保留。

这里也会有录友疑惑,那 4 + -1 之后 不就变小了吗? 会不会错过 4 成为最大连续和的可能性?

其实并不会,因为还有一个变量 result 一直在更新 最大的连续和,只要有更大的连续和出现,result 就更新了,那么 result 已经把 4 更新了,后面 连续和变成 3,也不会对最后结果有影响。

#动态规划

当然本题还可以用动态规划来做,在代码随想录动态规划章节我会详细介绍,如果大家想在想看,可以直接跳转:动态规划版本详解(opens new window)

那么先给出我的 dp 代码如下,有时间的录友可以提前做一做:

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        vector<int> dp(nums.size(), 0); // dp[i]表示包括i之前的最大连续子序列和
        dp[0] = nums[0];
        int result = dp[0];
        for (int i = 1; i < nums.size(); i++) {
            dp[i] = max(dp[i - 1] + nums[i], nums[i]); // 状态转移公式
            if (dp[i] > result) result = dp[i]; // result 保存dp[i]的最大值
        }
        return result;
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

#总结

本题的贪心思路其实并不好想,这也进一步验证了,别看贪心理论很直白,有时候看似是常识,但贪心的题目一点都不简单!

后续将介绍的贪心题目都挺难的,所以贪心很有意思,别小看贪心!


122.买卖股票的最佳时机 II

题意描述:

[!WARNING]

给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。

在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。

返回 你能获得的 最大 利润

示例 1:

输入:prices = [7,1,5,3,6,4]
输出:7
解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3。
最大总利润为 4 + 3 = 7 。

示例 2:

输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4。
最大总利润为 4 。

示例 3:

输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 交易无法获得正利润,所以不参与交易可以获得最大利润,最大利润为 0。

提示:

  • 1 <= prices.length <= 3 * 104
  • 0 <= prices[i] <= 104

思路:

[!TIP]

本题首先要清楚两点:

  • 只有一只股票!
  • 当前只有买股票或者卖股票的操作

想获得利润至少要两天为一个交易单元。

贪心算法

这道题目可能我们只会想,选一个低的买入,再选个高的卖,再选一个低的买入.....循环反复。

如果想到其实最终利润是可以分解的,那么本题就很容易了!

如何分解呢?

假如第 0 天买入,第 3 天卖出,那么利润为:prices[3] - prices[0]。

相当于(prices[3] - prices[2]) + (prices[2] - prices[1]) + (prices[1] - prices[0])。

此时就是把利润分解为每天为单位的维度,而不是从 0 天到第 3 天整体去考虑!

那么根据 prices 可以得到每天的利润序列:(prices[i] - prices[i - 1]).....(prices[1] - prices[0])。

如图:

122.买卖股票的最佳时机II

一些同学陷入:第一天怎么就没有利润呢,第一天到底算不算的困惑中。

第一天当然没有利润,至少要第二天才会有利润,所以利润的序列比股票序列少一天!

从图中可以发现,其实我们需要收集每天的正利润就可以,收集正利润的区间,就是股票买卖的区间,而我们只需要关注最终利润,不需要记录区间

那么只收集正利润就是贪心所贪的地方!

局部最优:收集每天的正利润,全局最优:求得最大利润

局部最优可以推出全局最优,找不出反例,试一试贪心!

对应 C++代码如下:

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int result = 0;
        for (int i = 1; i < prices.size(); i++) {
            result += max(prices[i] - prices[i - 1], 0);
        }
        return result;
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

动态规划

动态规划将在下一个系列详细讲解,本题解先给出我的 C++代码(带详细注释),想先学习的话,可以看本篇:122.买卖股票的最佳时机II(动态规划)(opens new window)

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        // dp[i][1]第i天持有的最多现金
        // dp[i][0]第i天持有股票后的最多现金
        int n = prices.size();
        vector<vector<int>> dp(n, vector<int>(2, 0));
        dp[0][0] -= prices[0]; // 持股票
        for (int i = 1; i < n; i++) {
            // 第i天持股票所剩最多现金 = max(第i-1天持股票所剩现金, 第i-1天持现金-买第i天的股票)
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
            // 第i天持有最多现金 = max(第i-1天持有的最多现金,第i-1天持有股票的最多现金+第i天卖出股票)
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
        }
        return max(dp[n - 1][0], dp[n - 1][1]);
    }
};
  • 时间复杂度:\(O(n)\)
  • 空间复杂度:\(O(n)\)

总结

股票问题其实是一个系列的,属于动态规划的范畴,因为目前在讲解贪心系列,所以股票问题会在之后的动态规划系列中详细讲解。

可以看出有时候,贪心往往比动态规划更巧妙,更好用,所以别小看了贪心算法

本题中理解利润拆分是关键点! 不要整块的去看,而是把整体利润拆为每天的利润。

一旦想到这里了,很自然就会想到贪心了,即:只收集每天的正利润,最后稳稳的就是最大利润了。


55. 跳跃游戏

题意描述:

[!WARNING]

给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。

判断你是否能够到达最后一个下标,如果可以,返回 true ;否则,返回 false

示例 1:

输入:nums = [2,3,1,1,4]
输出:true
解释:可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。

示例 2:

输入:nums = [3,2,1,0,4]
输出:false
解释:无论怎样,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 , 所以永远不可能到达最后一个下标。

提示:

  • 1 <= nums.length <= 104
  • 0 <= nums[i] <= 105

思路:

[!TIP]

刚看到本题一开始可能想:当前位置元素如果是 3,我究竟是跳一步呢,还是两步呢,还是三步呢,究竟跳几步才是最优呢?

其实跳几步无所谓,关键在于可跳的覆盖范围!

不一定非要明确一次究竟跳几步,每次取最大的跳跃步数,这个就是可以跳跃的覆盖范围。

这个范围内,别管是怎么跳的,反正一定可以跳过来。

那么这个问题就转化为跳跃覆盖范围究竟可不可以覆盖到终点!

每次移动取最大跳跃步数(得到最大的覆盖范围),每移动一个单位,就更新最大覆盖范围。

贪心算法局部最优解:每次取最大跳跃步数(取最大覆盖范围),整体最优解:最后得到整体最大覆盖范围,看是否能到终点

局部最优推出全局最优,找不出反例,试试贪心!

如图:

img

i 每次移动只能在 cover 的范围内移动,每移动一个元素,cover 得到该元素数值(新的覆盖范围)的补充,让 i 继续移动下去。

而 cover 每次只取 max(该元素数值补充后的范围, cover 本身范围)。

如果 cover 大于等于了终点下标,直接 return true 就可以了。

C++代码如下:

class Solution {
public:
    bool canJump(vector<int>& nums) {
        int cover = 0;
        if (nums.size() == 1) return true; // 只有一个元素,就是能达到
        for (int i = 0; i <= cover; i++) { // 注意这里是小于等于cover
            cover = max(i + nums[i], cover);
            if (cover >= nums.size() - 1) return true; // 说明可以覆盖到终点了
        }
        return false;
    }
};
  • 时间复杂度: O(n)
  • 空间复杂度: O(1)

总结

这道题目关键点在于:不用拘泥于每次究竟跳几步,而是看覆盖范围,覆盖范围内一定是可以跳过来的,不用管是怎么跳的。

大家可以看出思路想出来了,代码还是非常简单的。

一些同学可能感觉,我在讲贪心系列的时候,题目和题目之间貌似没有什么联系?

是真的就是没什么联系,因为贪心无套路!没有个整体的贪心框架解决一系列问题,只能是接触各种类型的题目锻炼自己的贪心思维!

45.跳跃游戏 II

题意描述:

[!WARNING]

给定一个长度为 n0 索引整数数组 nums。初始位置为 nums[0]

每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i + j] 处:

  • 0 <= j <= nums[i]
  • i + j < n

返回到达 nums[n - 1] 的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]

示例 1:

输入: nums = [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。
     从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。

示例 2:

输入: nums = [2,3,0,1,4]
输出: 2

提示:

  • 1 <= nums.length <= 104
  • 0 <= nums[i] <= 1000
  • 题目保证可以到达 nums[n-1]

思路:

[!TIP]

本题相对于55.跳跃游戏 (opens new window)还是难了不少。

但思路是相似的,还是要看最大覆盖范围

本题要计算最少步数,那么就要想清楚什么时候步数才一定要加一呢?

贪心的思路,局部最优:当前可移动距离尽可能多走,如果还没到终点,步数再加一。整体最优:一步尽可能多走,从而达到最少步数。

思路虽然是这样,但在写代码的时候还不能真的能跳多远就跳多远,那样就不知道下一步最远能跳到哪里了。

所以真正解题的时候,要从覆盖范围出发,不管怎么跳,覆盖范围内一定是可以跳到的,以最小的步数增加覆盖范围,覆盖范围一旦覆盖了终点,得到的就是最少步数!

这里需要统计两个覆盖范围,当前这一步的最大覆盖和下一步最大覆盖

如果移动下标达到了当前这一步的最大覆盖最远距离了,还没有到终点的话,那么就必须再走一步来增加覆盖范围,直到覆盖范围覆盖了终点。

如图:

45.跳跃游戏II

图中覆盖范围的意义在于,只要红色的区域,最多两步一定可以到!(不用管具体怎么跳,反正一定可以跳到)

方法一

从图中可以看出来,就是移动下标达到了当前覆盖的最远距离下标时,步数就要加一,来增加覆盖距离。最后的步数就是最少步数。

这里还是有个特殊情况需要考虑,当移动下标达到了当前覆盖的最远距离下标时

  • 如果当前覆盖最远距离下标不是是集合终点,步数就加一,还需要继续走。
  • 如果当前覆盖最远距离下标就是是集合终点,步数不用加一,因为不能再往后走了。

C++代码如下:(详细注释)

// 版本一
class Solution {
public:
    int jump(vector<int>& nums) {
        if (nums.size() == 1) return 0;
        int curDistance = 0;    // 当前覆盖最远距离下标
        int ans = 0;            // 记录走的最大步数
        int nextDistance = 0;   // 下一步覆盖最远距离下标
        for (int i = 0; i < nums.size(); i++) {
            nextDistance = max(nums[i] + i, nextDistance);  // 更新下一步覆盖最远距离下标
            if (i == curDistance) {                         // 遇到当前覆盖最远距离下标
                ans++;                                  // 需要走下一步
                curDistance = nextDistance;             // 更新当前覆盖最远距离下标(相当于加油了)
                if (nextDistance >= nums.size() - 1) break;  // 当前覆盖最远距到达集合终点,不用做ans++操作了,直接结束
            }
        }
        return ans;
    }
};
  • 时间复杂度: O(n)
  • 空间复杂度: O(1)

方法二

依然是贪心,思路和方法一差不多,代码可以简洁一些。

针对于方法一的特殊情况,可以统一处理,即:移动下标只要遇到当前覆盖最远距离的下标,直接步数加一,不考虑是不是终点的情况。

想要达到这样的效果,只要让移动下标,最大只能移动到 nums.size - 2 的地方就可以了。

因为当移动下标指向 nums.size - 2 时:

  • 如果移动下标等于当前覆盖最大距离下标, 需要再走一步(即 ans++),因为最后一步一定是可以到的终点。(题目假设总是可以到达数组的最后一个位置),如图:

    45.跳跃游戏II2

  • 如果移动下标不等于当前覆盖最大距离下标,说明当前覆盖最远距离就可以直接达到终点了,不需要再走一步。如图:

45.跳跃游戏II1

代码如下:

// 版本二
class Solution {
public:
    int jump(vector<int>& nums) {
        int curDistance = 0;    // 当前覆盖的最远距离下标
        int ans = 0;            // 记录走的最大步数
        int nextDistance = 0;   // 下一步覆盖的最远距离下标
        for (int i = 0; i < nums.size() - 1; i++) { // 注意这里是小于nums.size() - 1,这是关键所在
            nextDistance = max(nums[i] + i, nextDistance); // 更新下一步覆盖的最远距离下标
            if (i == curDistance) {                 // 遇到当前覆盖的最远距离下标
                curDistance = nextDistance;         // 更新当前覆盖的最远距离下标
                ans++;
            }
        }
        return ans;
    }
};
  • 时间复杂度: O(n)
  • 空间复杂度: O(1)

可以看出版本二的代码相对于版本一简化了不少!

其精髓在于控制移动下标 i 只移动到 nums.size() - 2 的位置,所以移动下标只要遇到当前覆盖最远距离的下标,直接步数加一,不用考虑别的了。

总结

相信大家可以发现,这道题目相当于55.跳跃游戏 (opens new window)难了不止一点。

但代码又十分简单,贪心就是这么巧妙。

理解本题的关键在于:以最小的步数增加最大的覆盖范围,直到覆盖范围覆盖了终点,这个范围内最少步数一定可以跳到,不用管具体是怎么跳的,不纠结于一步究竟跳一个单位还是两个单位。

标签:下标,nums,int,7.3,result,dp,贪心
From: https://www.cnblogs.com/7dragonpig/p/18282690

相关文章

  • 7.3日报
    今天是数据结构小学期的第三天,今天完成了第三道题,以下为题目要求:题目要求用先序序列和中序序列构造一棵二叉树(树中结点个数不超过10个),并输出其后序序列。输入格式:在第一行中输入元素个数。第二行中输入先序序列,用空格分隔。第三行中输入中序序列,用空格分隔。输出格式:输......
  • 使用国内源安装新版docker(2024.7.3)
    前言最近dockerhub已经不能访问了,使用原先的方式安装docker,服务器上也总是连接不上,所以找了种可以在国内正常安装新版docker的方式适用系统:centos71.先删除本机旧的或者残留的dockersudoyumremovedocker\docker-client\docker-client......
  • PHP8.0正常,PHP7.2,PHP7.3报错Connection failed: SQLSTATE[HY000] [2054] The server
    构建网站API接口的时候,使用了PDO进行数据库连接,原文如下 测试后发现,PHP8.0版本下,可以正常输出,但是PHP7.2和7.3则会报错:Connectionfailed:SQLSTATE[HY000][2054]Theserverrequestedauthenticationmethodunknowntotheclient经查验,发现因为所用的PHP7.2和7.3版本不支......
  • 模拟集成电路设计系列博客——7.3.1 并联比较型ADC基本介绍
    7.3.1并联比较型ADC基本介绍并联比较型ADC(后续都称作FlashADC)是实现超高速转换器的标准方式。FlashADC的输入信号被并行的馈入\(2^N\)个比较器中,如下图所示:每个比较器被连接到电阻串的节点上。任何连接到电阻串节点的比较器,如果\(V_{ri}\)大于\(V_{in}\)有着1的输出,而\(V_{r......
  • MySQL-5.7.38 基于二进制包一键安装脚本
    #!/bin/bash##********************************************************************#Author: Kevin#Date: 2024-06-23#FileName: install_mysql.sh#Description: Thetestscript#Copyright(C): 2024Allrightsreserved#****************************......
  • Linux下部署MySQL5.7.35
    1.MySQL下载(1)登录到以下网站 https://downloads.mysql.com/archives/community/(2)选择需要的版本,以及操作系统,这里是RedHatEnterpriseLinux/OracleLinux5.7.35版本。(3)Mysql安装需要5个rpm包,如下图    mysql-community-common-5.7.35-1.el7.x86_64.rpm......
  • 装机必备——Bandizip7.33安装教程
    装机必备——Bandizip7.33安装教程软件下载软件名称:Bandizip7.33软件语言:简体中文软件大小:8.42M系统要求:Windows7或更高,64位操作系统硬件要求:CPU@2+GHz,RAM@4G或更高下载通道①迅雷云盘丨下载链接:https://pan.xunlei.com/s/VNxVDiuzKZqhBspmP5_IIVnkA1?pwd=y6ra下......
  • vCenter 7.3 证书过期无法登录处理方法
    ​ 登录报错:如下图Exceptionininvkingauthenticationhandler[SSL:CERTIFICATE_VERIFY_FAILED]certificatevertifyfailed:certificatehasexpired(_ssl.c:1076)​ 处理方法1:推荐,可行登录vCenter控制台,Alt+F3切换至命令行模式,使用root登录,更改系统时间为过期前时......
  • [转]解决Win7和Linux Deepin双系统时间不同步的问题[2017.3.13 sina blog]
    原博地址:http://xsinger.me/diy/261.html/comment-page-1对于双系统的用户,有时候从Linux回到Windows的时候,时间总相差8小时。为什么LinuxDeepin和Windows双系统会有时间差因为安装LinuxDeepin时选择了UTC(协调世界时)时间,所以LinuxDeepin开机总是从互联网获取时间并且写入BIOS......
  • Alibaba Cloud Linux 3.2104 LTS 安装mysql5.7.39
    1上传mysql安装包到linux服务器tar-zxvfmysql-5.7.39-linux-glibc2.12-x86_64.tar.gzmvmysql-5.7.39-linux-glibc2.12-x86_64mysql5.72创建mysql用户groupaddmysqluseradd-gmysql-s/sbin/nologinmysqlchown-Rmysql:mysqlmysql5.7 ......