首页 > 其他分享 >Gym - 101147J Whistle's New Car 树上差分

Gym - 101147J Whistle's New Car 树上差分

时间:2022-10-20 11:35:45浏览次数:64  
标签:city int Car Gym Whistle num ans include dis

J. Whistle's New Car

time limit per test

memory limit per test

input

output

Whistle has bought a new car, which has an infinite fuel tank capacity.

He discovered an irregular country since it has n cities and there are exactly n - 1 roads between them, of course, all cities are connected. He is so much clever, he realized that the country is like a rooted tree of n nodes and node 1 is the root. Each city i has only one filling station by which he can fill his car's fuel tank in no more than Xi liter. Whistle liked the country very much, and he wants to know what the most attractive city in the country is. The attractiveness of the city i is defined by how much it’s reachable from other cities, in other words the attractiveness of city is the number of cities j that satisfies these condition:

  • Cityjis in the subtree of cityi(except for cityiitself).
  • Whistle will start at cityjand will only fill his car’s fuel tank withXjliters and never fill it again until he reach cityi.
  • Whistle should be able to reach cityiwith non-negative fuel.

He knows the length of every road and that 1 Km will take exactly 1 liter on any road.

As you know, Whistle is very clever, but he is not that good at programming, so he asked you to help him. He wants to know the attractiveness of each city, so that he can decide which city to live in.

Input

The first line of input contains one integer T, the number of test cases.

The next line contains one integer (1 ≤ n ≤ 500, 000), The number of cities in the country.

The next line contains n integers (1 ≤ Xi ≤ 1, 000, 000, 000).

Each one of the next n - 1 line contains three integers ABC (1 ≤ A, B ≤ n and 1 ≤ C ≤ 1, 000, 000, 000), that means there is a road between city A and city B of length C.

Output

For each test case, output a line containing n integers, the attractiveness of each city.

Example

input

1
4
5 10 5 10
1 2 100
2 3 5
3 4 5

output

0 2 1 0

Note

Large I/O files. Please consider using fast input/output methods.

 

 

设dis[i]表示从根节点1走到第 i个节点的路径长度。

那么任意的路径u-->v(前提是u是v的祖先,不然要用lca,这里不需要)可以表示为dis[v] - dis[u]

那么如果v能走回到u,则需要a[v] >= dis[v] - dis[u],即是dis[v] - a[v] <= dis[u],其中dis[v] - a[v]是一个确定值。

那么题意转换成,对于每一个节点u,有一个值dis[u],问其子树中,有多少个节点,满足dis[sonNode] - a[sonNode] <= dis[u]的。

这里可以用dfs序,然后用区间第k大的线段树或者分块、离线BIT之类的数据结构维护。

但是注意到dis[]是关于深度递增的,就是越走到下面,dis越大,也就是单调。

那么dfs的时候,用个vector记录一下路径长度和节点id。二分找到第一个祖先,使得满足dis[sonNode] - a[sonNode] <= dis[u]

那么可以知道ans[那个祖先节点 ---- 当前节点的爸爸],这条路径上的贡献都要加1

其实也就是打标记。

和一维差不多,L....R中加上1等价于sum[L] += 1, sum[R + 1] -= 1

这里一样,sum[当前节点的爸爸] += 1, sum[第一个满足的祖先的爸爸] -= 1

不能从上到下打标记,因为儿子数目不确定,而爸爸是确定的。

 

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <assert.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL;


#include <iostream>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <string>
const int maxn = 500000 + 20;
struct Edge {
int u, v, tonext, len;
}e[maxn * 2];
int first[maxn], num;
int a[maxn];
void addEdge(int u, int v, int w) {
++num;
e[num].u = u, e[num].v = v, e[num].len = w;
e[num].tonext = first[u];
first[u] = num;
}
int ans[maxn];
vector< pair<LL, int> > vc;
int vis[maxn], DFN;
void dfs(int cur, LL nowLen, int fa) {
ans[fa]++;
int pos = lower_bound(vc.begin(), vc.end(), make_pair(nowLen - a[cur], 0)) - vc.begin();
pos--; //去到第一个满足的的祖先的爸爸
if (pos >= 0) {
ans[vc[pos].second]--;
}
vc.push_back(make_pair(nowLen, cur));
for (int i = first[cur]; i; i = e[i].tonext) {
int v = e[i].v;
if (v == fa) continue;
dfs(v, nowLen + e[i].len, cur);
ans[cur] += ans[v];
}
vc.pop_back();
}
void work() {
num = 0;
++DFN;
memset(first, false, sizeof first);
memset(ans, 0, sizeof ans);
int n;
scanf("%d", &n);
for (int i = 1; i <= n; ++i) cin >> a[i];
for (int i = 1; i <= n - 1; ++i) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
addEdge(u, v, w);
addEdge(v, u, w);
}
dfs(1, 0, 0);
for (int i = 1; i <= n; ++i) {
printf("%d ", ans[i]);
}
printf("\n");
}

int main() {
#ifdef local
freopen("data.txt", "r", stdin);
// freopen("data.txt", "w", stdout);
#endif
freopen("car.in", "r", stdin);
int t;
scanf("%d", &t);
while (t--) work();
return 0;
}

 

标签:city,int,Car,Gym,Whistle,num,ans,include,dis
From: https://blog.51cto.com/u_15833059/5779581

相关文章

  • On the way to the park Gym - 101147I 几何
    ​​http://codeforces.com/gym/101147/problem/I​​I.OnthewaytotheparktimelimitpertestmemorylimitpertestinputoutputEngineersaroundtheworldsharea......
  • Rasheda And The Zeriba Gym - 100283A  计算几何
    ​​http://codeforces.com/gym/100283/problem/A​​考虑到多边形是不稳定的,是可以变来变去的。那么总是可以把每个点放到圆上。所以只需要判断圆心角是不是小于等于360即......
  • IfcAreaDensityMeasure
    IfcAreaDensityMeasure类型定义IfcAreaDensityMeasure是二维物体密度的量度,按单位面积的质量计算。通常以kg/m2计量。类型:REALIFC4中的新类型。 EXPRESSSpecifica......
  • Event-based Vision meets Deep Learning on Steering Prediction for Self-driving C
    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布!CVPR2018 Abstract事件相机是仿生视觉传感器,可以自然地捕捉场景的动态,过滤掉多余的信息。本文提出了一种......
  • Simulation-计算统计——Monte Carlo
    MonteCarloIntegration找到原函数,再计算无法找到原函数,MC积分Assumethatwecangenerate\(U_1,...,U_n\simUniform(0,1)\),anddefine\(\hat\theta......
  • IfcAreaMeasure
    IfcAreaMeasure类型定义面积度量是曲面范围的值。通常以平方米(m2)计量。类型:REAL注:类型根据ISO10303-41中定义的面积测量值改编。IFC1.5.1中的新类型。  EXPRES......
  • Exam Results Gym - 102769E
    https://vjudge.net/problem/Gym-102769E#include<cstdio>#include<iostream>#include<cstring>#include<algorithm>usingnamespacestd;typedeflonglongll;......
  • Card Deck CodeForces - 1492B
    CardDeckCodeForces-1492B你有一副n张牌,你想把它重新排序为一副新的。每张卡都有一个介于1和n之间的值,该值等于pi。所有pi两两不同。牌组中的牌是从下到上......
  • 全志 Tina Linux 存储介质切换:eMMC,SPI NAND,SPI NOR,SD Card,SD NAND
    存储切换方法SDK切换存储介质需要修改board.dts、sys_config.fex、内核配置、TINA系统配置。另外,在spinor存储介质下,通过u-boot-sun8iw21p1.bin进行烧录,u-boot-spinor-s......
  • Carina 全新版本 v0.11.0 上线!重磅升级不可错过
    Carina 是一款高性能、免运维的云原生本地存储项目(GitHub地址为:https://github.com/carina-io/carina),目前已进入CNCF全景图。Carina 旨在为云原生环境中的有状态应用提......