- 转载自 wkh2008 。
#include <bits/stdc++.h>
using namespace std;
namespace BIGINT {
using cpx = complex<double>;
const double PI = acos(-1);
vector<cpx>roots = {{0, 0}, {1, 0}};
void ensure_capacity(int min_capacity) {
for (int len = roots.size(); len < min_capacity; len *= 2) {
for (int i = len >> 1; i < len; i++) {
roots.emplace_back(roots[i]);
double angle = 2 * PI * (2 * i + 1 - len) / (len * 2);
roots.emplace_back(cos(angle), sin(angle));
}
}
} void fft(vector<cpx> &z, bool inverse) {
size_t n = z.size();
assert((n & (n - 1)) == 0);
ensure_capacity(n);
for (size_t i = 1, j = 0; i < n; i++) {
size_t bit = n >> 1;
for (; j >= bit; bit >>= 1)
j -= bit;
j += bit;
if (i < j)
swap(z[i], z[j]);
}
for (size_t len = 1; len < n; len <<= 1) {
for (size_t i = 0; i < n; i += len * 2) {
for (size_t j = 0; j < len; j++) {
cpx root = inverse ? conj(roots[j + len]) : roots[j + len];
cpx u = z[i + j];
cpx v = z[i + j + len] * root;
z[i + j] = u + v;
z[i + j + len] = u - v;
}
}
}
if (inverse)
for (size_t i = 0; i < n; i++)
z[i] /= n;
} vector<int>multiply_BI(const vector<int> &a, const vector<int> &b, int base) {
size_t need = a.size() + b.size();
size_t n = 1;
while (n < need)
n <<= 1;
vector<cpx>p(n);
for (size_t i = 0; i < n; i++) {
p[i] = cpx(i < a.size() ? a[i] : 0, i < b.size() ? b[i] : 0);
}
fft(p, false);
vector<cpx>ab(n);
cpx r(0, -0.25);
for (size_t i = 0; i < n; i++) {
int j = (n - i) & (n - 1);
ab[i] = (p[i] * p[i] - conj(p[j] * p[j])) * r;
}
fft(ab, true);
vector<int>result(need);
long long carry = 0;
for (size_t i = 0; i < need; i++) {
long long d = (long long)(ab[i].real() + 0.5) + carry;
carry = d / base;
result[i] = d % base;
}
return result;
} vector<int>multiply_mod(const vector<int> &a, const vector<int> &b, int m) {
int need = a.size() + b.size() - 1;
int n = 1;
while (n < need)
n <<= 1;
vector<cpx>A(n);
for (size_t i = 0; i < a.size(); i++) {
int x = (a[i] % m + m) % m;
A[i] = cpx(x & ((1 << 15) - 1), x >> 15);
}
fft(A, false);
vector<cpx>B(n);
for (size_t i = 0; i < b.size(); i++) {
int x = (b[i] % m + m) % m;
B[i] = cpx(x & ((1 << 15) - 1), x >> 15);
}
fft(B, false);
vector<cpx>fa(n);
vector<cpx>fb(n);
for (int i = 0, j = 0; i < n; i++, j = n - i) {
cpx a1 = (A[i] + conj(A[j])) * cpx(0.5, 0);
cpx a2 = (A[i] - conj(A[j])) * cpx(0, -0.5);
cpx b1 = (B[i] + conj(B[j])) * cpx(0.5, 0);
cpx b2 = (B[i] - conj(B[j])) * cpx(0, -0.5);
fa[i] = a1 * b1 + a2 * b2 * cpx(0, 1);
fb[i] = a1 * b2 + a2 * b1;
}
fft(fa, true);
fft(fb, true);
vector<int>res(need);
for (int i = 0; i < need; i++) {
long long aa = (long long)(fa[i].real() + 0.5);
long long bb = (long long)(fb[i].real() + 0.5);
long long cc = (long long)(fa[i].imag() + 0.5);
res[i] = (aa % m + (bb % m << 15) + (cc % m << 30)) % m;
}
return res;
} constexpr int digits(int base)noexcept {
return base <= 1 ? 0 : 1 + digits(base / 10);
} constexpr int base = 1000'000'000;
constexpr int base_digits = digits(base);
constexpr int fft_base = 10'000;
constexpr int fft_base_digits = digits(fft_base);
struct BI {
vector<int>z;
int sign;
BI(long long v = 0) {
*this = v;
} BI &operator=(long long v) {
sign = v < 0 ? -1 : 1;
v *= sign;
z.clear();
for (; v > 0; v = v / base)
z.push_back((int)(v % base));
return*this;
} BI(const string &s) {
read(s);
} BI &operator+=(const BI &other) {
if (sign == other.sign) {
for (size_t i = 0, carry = 0; i < other.z.size() || carry; ++i) {
if (i == z.size())
z.push_back(0);
z[i] += carry + (i < other.z.size() ? other.z[i] : 0);
carry = z[i] >= base;
if (carry)
z[i] -= base;
}
} else if (other != 0) {
*this -= -other;
}
return*this;
} friend BI operator+(BI a, const BI &b) {
a += b;
return a;
} BI &operator-=(const BI &other) {
if (sign == other.sign) {
if ((sign == 1 && *this >= other) || (sign == -1 && *this <= other)) {
for (size_t i = 0, carry = 0; i < other.z.size() || carry; ++i) {
z[i] -= carry + (i < other.z.size() ? other.z[i] : 0);
carry = z[i] < 0;
if (carry)
z[i] += base;
}
trim();
} else {
*this = other - *this;
this->sign = -this->sign;
}
} else {
*this += -other;
}
return*this;
} friend BI operator-(BI a, const BI &b) {
a -= b;
return a;
} BI &operator*=(int v) {
if (v < 0)
sign = -sign, v = -v;
for (size_t i = 0, carry = 0; i < z.size() || carry; ++i) {
if (i == z.size())
z.push_back(0);
long long cur = (long long)z[i] * v + carry;
carry = (int)(cur / base);
z[i] = (int)(cur % base);
}
trim();
return*this;
} BI operator*(int v)const {
return BI(*this) *= v;
} friend pair<BI, BI>divmod(const BI &a1, const BI &b1) {
int norm = base / (b1.z.back() + 1);
BI a = a1.abs() * norm;
BI b = b1.abs() * norm;
BI q, r;
q.z.resize(a.z.size());
for (int i = (int)a.z.size() - 1; i >= 0; i--) {
r *= base;
r += a.z[i];
int s1 = b.z.size() < r.z.size() ? r.z[b.z.size()] : 0;
int s2 = b.z.size() - 1 < r.z.size() ? r.z[b.z.size() - 1] : 0;
int d = (int)(((long long)s1 * base + s2) / b.z.back());
r -= b * d;
while (r < 0)
r += b, --d;
q.z[i] = d;
}
q.sign = a1.sign * b1.sign;
r.sign = a1.sign;
q.trim();
r.trim();
return{q, r / norm};
} friend BI sqrt(const BI &a1) {
BI a = a1;
while (a.z.empty() || a.z.size() % 2 == 1)
a.z.push_back(0);
int n = a.z.size();
int firstDigit = (int)::sqrt((double)a.z[n - 1] * base + a.z[n - 2]);
int norm = base / (firstDigit + 1);
a *= norm;
a *= norm;
while (a.z.empty() || a.z.size() % 2 == 1)
a.z.push_back(0);
BI r = (long long)a.z[n - 1] * base + a.z[n - 2];
firstDigit = (int)::sqrt((double)a.z[n - 1] * base + a.z[n - 2]);
int q = firstDigit;
BI res;
for (int j = n / 2 - 1; j >= 0; j--) {
for (;; --q) {
BI r1 = (r - (res * 2 * base + q) * q) * base * base + (j > 0 ? (long long)a.z[2 * j - 1] * base + a.z[2 * j -
2] : 0);
if (r1 >= 0) {
r = r1;
break;
}
}
res *= base;
res += q;
if (j > 0) {
int d1 = res.z.size() + 2 < r.z.size() ? r.z[res.z.size() + 2] : 0;
int d2 = res.z.size() + 1 < r.z.size() ? r.z[res.z.size() + 1] : 0;
int d3 = res.z.size() < r.z.size() ? r.z[res.z.size()] : 0;
q = (int)(((long long)d1 * base * base + (long long)d2 * base + d3) / (firstDigit * 2));
}
}
res.trim();
return res / norm;
} BI operator/(const BI &v)const {
return divmod(*this, v).first;
} BI operator%(const BI &v)const {
return divmod(*this, v).second;
} BI &operator/=(int v) {
if (v < 0)
sign = -sign, v = -v;
for (int i = (int)z.size() - 1, rem = 0; i >= 0; --i) {
long long cur = z[i] + rem * (long long)base;
z[i] = (int)(cur / v);
rem = (int)(cur % v);
}
trim();
return*this;
} BI operator/(int v)const {
return BI(*this) /= v;
} int operator%(int v)const {
if (v < 0)
v = -v;
int m = 0;
for (int i = (int)z.size() - 1; i >= 0; --i)
m = (int)((z[i] + m * (long long)base) % v);
return m * sign;
} BI &operator*=(const BI &v) {
*this = *this * v;
return*this;
} BI &operator/=(const BI &v) {
*this = *this / v;
return*this;
} BI &operator%=(const BI &v) {
*this = *this % v;
return*this;
} bool operator<(const BI &v)const {
if (sign != v.sign)
return sign < v.sign;
if (z.size() != v.z.size())
return z.size() * sign < v.z.size() * v.sign;
for (int i = (int)z.size() - 1; i >= 0; i--)
if (z[i] != v.z[i])
return z[i] * sign < v.z[i] * sign;
return false;
} bool operator>(const BI &v)const {
return v < *this;
} bool operator<=(const BI &v)const {
return!(v < *this);
} bool operator>=(const BI &v)const {
return!(*this < v);
} bool operator==(const BI &v)const {
return sign == v.sign && z == v.z;
} bool operator!=(const BI &v)const {
return!(*this == v);
} void trim() {
while (!z.empty() && z.back() == 0)
z.pop_back();
if (z.empty())
sign = 1;
} bool isZero()const {
return z.empty();
} friend BI operator-(BI v) {
if (!v.z.empty())
v.sign = -v.sign;
return v;
} BI abs()const {
return sign == 1 ? *this : -*this;
} long long longValue()const {
long long res = 0;
for (int i = (int)z.size() - 1; i >= 0; i--)
res = res * base + z[i];
return res * sign;
} friend BI gcd(const BI &a, const BI &b) {
return b.isZero() ? a : gcd(b, a % b);
} friend BI lcm(const BI &a, const BI &b) {
return a / gcd(a, b) * b;
} void read(const string &s) {
sign = 1;
z.clear();
int pos = 0;
while (pos < (int)s.size() && (s[pos] == '-' || s[pos] == '+')) {
if (s[pos] == '-')
sign = -sign;
++pos;
}
for (int i = (int)s.size() - 1; i >= pos; i -= base_digits) {
int x = 0;
for (int j = max(pos, i - base_digits + 1); j <= i; j++)
x = x * 10 + s[j] - '0';
z.push_back(x);
}
trim();
} friend istream &operator>>(istream &stream, BI &v) {
string s;
stream >> s;
v.read(s);
return stream;
} friend ostream &operator<<(ostream &stream, const BI &v) {
if (v.sign == -1)
stream << '-';
stream << (v.z.empty() ? 0 : v.z.back());
for (int i = (int)v.z.size() - 2; i >= 0; --i)
stream << setw(base_digits) << setfill('0') << v.z[i];
return stream;
} static vector<int>convert_base(const vector<int> &a, int old_digits, int new_digits) {
vector<long long>p(max(old_digits, new_digits) + 1);
p[0] = 1;
for (size_t i = 1; i < p.size(); i++)
p[i] = p[i - 1] * 10;
vector<int>res;
long long cur = 0;
int cur_digits = 0;
for (int v : a) {
cur += v * p[cur_digits];
cur_digits += old_digits;
while (cur_digits >= new_digits) {
res.push_back(int(cur % p[new_digits]));
cur /= p[new_digits];
cur_digits -= new_digits;
}
}
res.push_back((int)cur);
while (!res.empty() && res.back() == 0)
res.pop_back();
return res;
} BI operator*(const BI &v)const {
if (min(z.size(), v.z.size()) < 150)
return mul_simple(v);
BI res;
res.sign = sign * v.sign;
res.z = multiply_BI(convert_base(z, base_digits, fft_base_digits), convert_base(v.z, base_digits,
fft_base_digits), fft_base);
res.z = convert_base(res.z, fft_base_digits, base_digits);
res.trim();
return res;
} BI mul_simple(const BI &v)const {
BI res;
res.sign = sign * v.sign;
res.z.resize(z.size() + v.z.size());
for (size_t i = 0; i < z.size(); ++i)
if (z[i])
for (size_t j = 0, carry = 0; j < v.z.size() || carry; ++j) {
long long cur = res.z[i + j] + (long long)z[i] * (j < v.z.size() ? v.z[j] : 0) + carry;
carry = (int)(cur / base);
res.z[i + j] = (int)(cur % base);
}
res.trim();
return res;
}
};
mt19937 rng(1);
BI random_BI(int n) {
string s;
for (int i = 0; i < n; i++) {
s += uniform_int_distribution<int>('0', '9')(rng);
}
return BI(s);
}
}
signed main() {
BIGINT::BI a, b;
cin >> a >> b;
cout << a / b << '\n';
return 0;
}
使用指南
可视为 \(int\) ,但不可以用 \(memset\) ,位运算等函数,作为下表的仍用 \(int\) 。
标签:const,高精度,int,BI,long,base,模板,size From: https://www.cnblogs.com/Charlieljk/p/18282405