首页 > 编程语言 >算法题常见模板

算法题常见模板

时间:2024-07-01 18:21:58浏览次数:15  
标签:return nums int 常见 ++ 算法 new 模板

数据结构类

  1. 数组 (Array)

    • 双指针 (Two Pointers)
    • 滑动窗口 (Sliding Window)
    • 前缀和 (Prefix Sum)
  2. 链表 (Linked List)

    • 单链表反转 (Reverse Linked List)
    • 链表合并 (Merge Linked Lists)
    • 链表环检测 (Cycle Detection)
  3. 栈和队列 (Stack and Queue)

    • 栈的基本操作 (Basic Stack Operations)
    • 队列的基本操作 (Basic Queue Operations)
    • 单调栈 (Monotonic Stack)
    • 优先队列 (Priority Queue)
  4. 树 (Tree)

    • 二叉树遍历 (Binary Tree Traversal)
    • 二叉搜索树 (Binary Search Tree)
    • 平衡二叉树 (Balanced Binary Tree)
    • 树的最大/最小深度 (Max/Min Depth of Tree)
    • 树的路径问题 (Tree Path Problems)
  5. 图 (Graph)

    • 图的遍历 (Graph Traversal: DFS and BFS)
    • 最短路径 (Shortest Path)
    • 拓扑排序 (Topological Sorting)
    • 连通分量 (Connected Components)

题目类型类

  1. 排序与搜索 (Sorting and Searching)

    • 经典排序算法 (Classic Sorting Algorithms: Quick Sort, Merge Sort, etc.)
    • 二分查找 (Binary Search)
    • 快速选择 (Quick Select)
  2. 动态规划 (Dynamic Programming)

    • 斐波那契数列 (Fibonacci Sequence)
    • 背包问题 (Knapsack Problem)
    • 最长公共子序列 (Longest Common Subsequence)
    • 最长递增子序列 (Longest Increasing Subsequence)
  3. 回溯法 (Backtracking)

    • 排列与组合 (Permutations and Combinations)
    • N皇后问题 (N-Queens Problem)
    • 子集生成 (Subset Generation)
  4. 贪心算法 (Greedy Algorithm)

    • 区间调度 (Interval Scheduling)
    • 跳跃游戏 (Jump Game)
    • 分糖果问题 (Candy Distribution)
  5. 字符串 (String)

    • 字符串匹配 (String Matching: KMP, Rabin-Karp, etc.)
    • 字符串变换 (String Transformation)
    • 最长公共子串 (Longest Common Substring)
  6. 数学与位运算 (Math and Bit Manipulation)

    • 素数问题 (Prime Numbers)
    • 数学组合 (Mathematical Combinations)
    • 位运算技巧 (Bit Manipulation Tricks)

数据结构类

1. 数组 (Array)

双指针 (Two Pointers)

模板:删除排序数组中的重复项

public int RemoveDuplicates(int[] nums) {
    if (nums.Length == 0) return 0;
    int i = 0;
    for (int j = 1; j < nums.Length; j++) {
        if (nums[j] != nums[i]) {
            i++;
            nums[i] = nums[j];
        }
    }
    return i + 1;
}
滑动窗口 (Sliding Window)

模板:最大连续子数组和

public int MaxSubArray(int[] nums) {
    int maxSum = nums[0];
    int currentSum = nums[0];
    for (int i = 1; i < nums.Length; i++) {
        currentSum = Math.Max(nums[i], currentSum + nums[i]);
        maxSum = Math.Max(maxSum, currentSum);
    }
    return maxSum;
}
前缀和 (Prefix Sum)

模板:数组的前缀和

public int[] PrefixSum(int[] nums) {
    int[] prefixSum = new int[nums.Length];
    prefixSum[0] = nums[0];
    for (int i = 1; i < nums.Length; i++) {
        prefixSum[i] = prefixSum[i - 1] + nums[i];
    }
    return prefixSum;
}

2. 链表 (Linked List)

单链表反转 (Reverse Linked List)

模板:反转链表

public ListNode ReverseList(ListNode head) {
    ListNode prev = null;
    ListNode curr = head;
    while (curr != null) {
        ListNode nextTemp = curr.next;
        curr.next = prev;
        prev = curr;
        curr = nextTemp;
    }
    return prev;
}
链表合并 (Merge Linked Lists)

模板:合并两个有序链表

public ListNode MergeTwoLists(ListNode l1, ListNode l2) {
    if (l1 == null) return l2;
    if (l2 == null) return l1;
    if (l1.val < l2.val) {
        l1.next = MergeTwoLists(l1.next, l2);
        return l1;
    } else {
        l2.next = MergeTwoLists(l1, l2.next);
        return l2;
    }
}
链表环检测 (Cycle Detection)

模板:检测链表环

public bool HasCycle(ListNode head) {
    if (head == null || head.next == null) return false;
    ListNode slow = head;
    ListNode fast = head.next;
    while (slow != fast) {
        if (fast == null || fast.next == null) return false;
        slow = slow.next;
        fast = fast.next.next;
    }
    return true;
}

3. 栈和队列 (Stack and Queue)

栈的基本操作 (Basic Stack Operations)

模板:栈的基本操作

Stack<int> stack = new Stack<int>();
stack.Push(1);
stack.Push(2);
int top = stack.Peek();
stack.Pop();
bool isEmpty = stack.Count == 0;
队列的基本操作 (Basic Queue Operations)

模板:队列的基本操作

Queue<int> queue = new Queue<int>();
queue.Enqueue(1);
queue.Enqueue(2);
int front = queue.Peek();
queue.Dequeue();
bool isEmpty = queue.Count == 0;
单调栈 (Monotonic Stack)

模板:单调栈用于下一个更大元素问题

public int[] NextGreaterElement(int[] nums) {
    int[] result = new int[nums.Length];
    Stack<int> stack = new Stack<int>();
    for (int i = nums.Length - 1; i >= 0; i--) {
        while (stack.Count > 0 && stack.Peek() <= nums[i]) {
            stack.Pop();
        }
        result[i] = stack.Count == 0 ? -1 : stack.Peek();
        stack.Push(nums[i]);
    }
    return result;
}
优先队列 (Priority Queue)

模板:优先队列的基本操作

PriorityQueue<int, int> pq = new PriorityQueue<int, int>();
pq.Enqueue(1, 1);
pq.Enqueue(2, 2);
int top = pq.Dequeue();

4. 树 (Tree)

二叉树遍历 (Binary Tree Traversal)

模板:二叉树的前序遍历

public IList<int> PreorderTraversal(TreeNode root) {
    List<int> result = new List<int>();
    PreorderHelper(root, result);
    return result;
}

private void PreorderHelper(TreeNode node, List<int> result) {
    if (node == null) return;
    result.Add(node.val);
    PreorderHelper(node.left, result);
    PreorderHelper(node.right, result);
}
二叉搜索树 (Binary Search Tree)

模板:验证二叉搜索树

public bool IsValidBST(TreeNode root) {
    return Validate(root, null, null);
}

private bool Validate(TreeNode node, int? lower, int? upper) {
    if (node == null) return true;
    int val = node.val;
    if (lower != null && val <= lower) return false;
    if (upper != null && val >= upper) return false;
    if (!Validate(node.right, val, upper)) return false;
    if (!Validate(node.left, lower, val)) return false;
    return true;
}
平衡二叉树 (Balanced Binary Tree)

模板:判断平衡二叉树

public bool IsBalanced(TreeNode root) {
    return CheckHeight(root) != -1;
}

private int CheckHeight(TreeNode node) {
    if (node == null) return 0;
    int left = CheckHeight(node.left);
    if (left == -1) return -1;
    int right = CheckHeight(node.right);
    if (right == -1) return -1;
    if (Math.Abs(left - right) > 1) return -1;
    return Math.Max(left, right) + 1;
}
树的最大/最小深度 (Max/Min Depth of Tree)

模板:二叉树的最大深度

public int MaxDepth(TreeNode root) {
    if (root == null) return 0;
    int leftDepth = MaxDepth(root.left);
    int rightDepth = MaxDepth(root.right);
    return Math.Max(leftDepth, rightDepth) + 1;
}
树的路径问题 (Tree Path Problems)

模板:二叉树的所有路径

public IList<string> BinaryTreePaths(TreeNode root) {
    List<string> paths = new List<string>();
    if (root == null) return paths;
    if (root.left == null && root.right == null) paths.Add(root.val.ToString());
    if (root.left != null) foreach (var path in BinaryTreePaths(root.left)) paths.Add(root.val + "->" + path);
    if (root.right != null) foreach (var path in BinaryTreePaths(root.right)) paths.Add(root.val + "->" + path);
    return paths;
}

5. 图 (Graph)

图的遍历 (Graph Traversal: DFS and BFS)

模板:深度优先搜索

public void DFS(int[,] graph, int start) {
    bool[] visited = new bool[graph.GetLength(0)];
    Stack<int> stack = new Stack<int>();
    stack.Push(start);
    while (stack.Count > 0) {
        int node = stack.Pop();
        if (!visited[node]) {
            visited[node] = true;
            Console.WriteLine($"Visited {node}");
            for (int i = 0; i < graph.GetLength(1); i++) {
                if (graph[node, i] == 1 && !visited[i]) {
                    stack.Push(i);
                }
            }
        }
    }
}

模板:广度优先搜索

public void BFS(int[,] graph, int start) {
    bool[] visited = new bool[graph.GetLength(0)];
    Queue<int> queue = new Queue<int>();
    queue.Enqueue(start);
    visited[start] = true;
    while (queue.Count > 0) {
        int node = queue.Dequeue();
        Console.WriteLine($"Visited {node}");
        for (int i = 0; i < graph.GetLength(1); i++) {
            if (graph[node, i] == 1 && !visited[i]) {
                queue.Enqueue(i);
                visited[i] = true;
            }
        }
    }
}
最短路径 (Shortest Path)

模板:Dijkstra算法

public int[] Dijkstra(int[,] graph, int start) {
    int n = graph.GetLength(0);
    int[] dist = new int[n];
    bool[] visited = new bool[n];


    for (int i = 0; i < n; i++) dist[i] = int.MaxValue;
    dist[start] = 0;
    for (int i = 0; i < n; i++) {
        int u = -1;
        for (int j = 0; j < n; j++) {
            if (!visited[j] && (u == -1 || dist[j] < dist[u])) {
                u = j;
            }
        }
        if (dist[u] == int.MaxValue) break;
        visited[u] = true;
        for (int v = 0; v < n; v++) {
            if (!visited[v] && graph[u, v] != 0 && dist[u] + graph[u, v] < dist[v]) {
                dist[v] = dist[u] + graph[u, v];
            }
        }
    }
    return dist;
}
拓扑排序 (Topological Sorting)

模板:Kahn's算法

public List<int> TopologicalSort(int[,] graph) {
    int n = graph.GetLength(0);
    int[] inDegree = new int[n];
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            if (graph[i, j] != 0) inDegree[j]++;
        }
    }
    Queue<int> queue = new Queue<int>();
    for (int i = 0; i < n; i++) {
        if (inDegree[i] == 0) queue.Enqueue(i);
    }
    List<int> topOrder = new List<int>();
    while (queue.Count > 0) {
        int node = queue.Dequeue();
        topOrder.Add(node);
        for (int i = 0; i < n; i++) {
            if (graph[node, i] != 0) {
                inDegree[i]--;
                if (inDegree[i] == 0) queue.Enqueue(i);
            }
        }
    }
    return topOrder;
}
连通分量 (Connected Components)

模板:使用DFS寻找连通分量

public int CountConnectedComponents(int[,] graph) {
    int n = graph.GetLength(0);
    bool[] visited = new bool[n];
    int count = 0;
    for (int i = 0; i < n; i++) {
        if (!visited[i]) {
            DFS(graph, i, visited);
            count++;
        }
    }
    return count;
}

private void DFS(int[,] graph, int node, bool[] visited) {
    Stack<int> stack = new Stack<int>();
    stack.Push(node);
    while (stack.Count > 0) {
        int u = stack.Pop();
        if (!visited[u]) {
            visited[u] = true;
            for (int v = 0; v < graph.GetLength(1); v++) {
                if (graph[u, v] == 1 && !visited[v]) {
                    stack.Push(v);
                }
            }
        }
    }
}

题目类型类

1. 排序与搜索 (Sorting and Searching)

经典排序算法 (Classic Sorting Algorithms: Quick Sort, Merge Sort, etc.)

模板:快速排序

public void QuickSort(int[] nums, int left, int right) {
    if (left < right) {
        int pivotIndex = Partition(nums, left, right);
        QuickSort(nums, left, pivotIndex - 1);
        QuickSort(nums, pivotIndex + 1, right);
    }
}

private int Partition(int[] nums, int left, int right) {
    int pivot = nums[right];
    int i = left - 1;
    for (int j = left; j < right; j++) {
        if (nums[j] < pivot) {
            i++;
            Swap(nums, i, j);
        }
    }
    Swap(nums, i + 1, right);
    return i + 1;
}

private void Swap(int[] nums, int i, int j) {
    int temp = nums[i];
    nums[i] = nums[j];
    nums[j] = temp;
}

模板:二分查找

public int BinarySearch(int[] nums, int target) {
    int left = 0, right = nums.Length - 1;
    while (left <= right) {
        int mid = left + (right - left) / 2;
        if (nums[mid] == target) return mid;
        if (nums[mid] < target) left = mid + 1;
        else right = mid - 1;
    }
    return -1;
}
快速选择 (Quick Select)

模板:快速选择

public int QuickSelect(int[] nums, int k) {
    return QuickSelect(nums, 0, nums.Length - 1, k - 1);
}

private int QuickSelect(int[] nums, int left, int right, int k) {
    if (left == right) return nums[left];
    int pivotIndex = Partition(nums, left, right);
    if (k == pivotIndex) return nums[k];
    else if (k < pivotIndex) return QuickSelect(nums, left, pivotIndex - 1, k);
    else return QuickSelect(nums, pivotIndex + 1, right, k);
}

private int Partition(int[] nums, int left, int right) {
    int pivot = nums[right];
    int i = left;
    for (int j = left; j < right; j++) {
        if (nums[j] < pivot) {
            Swap(nums, i, j);
            i++;
        }
    }
    Swap(nums, i, right);
    return i;
}

private void Swap(int[] nums, int i, int j) {
    int temp = nums[i];
    nums[i] = nums[j];
    nums[j] = temp;
}

2. 动态规划 (Dynamic Programming)

斐波那契数列 (Fibonacci Sequence)

模板:斐波那契数列

public int Fib(int n) {
    if (n <= 1) return n;
    int[] dp = new int[n + 1];
    dp[0] = 0;
    dp[1] = 1;
    for (int i = 2; i <= n; i++) {
        dp[i] = dp[i - 1] + dp[i - 2];
    }
    return dp[n];
}
背包问题 (Knapsack Problem)

模板:0-1背包问题

public int Knapsack(int[] weights, int[] values, int capacity) {
    int n = weights.Length;
    int[,] dp = new int[n + 1, capacity + 1];
    for (int i = 1; i <= n; i++) {
        for (int w = 1; w <= capacity; w++) {
            if (weights[i - 1] <= w) {
                dp[i, w] = Math.Max(dp[i - 1, w], dp[i - 1, w - weights[i - 1]] + values[i - 1]);
            } else {
                dp[i, w] = dp[i - 1, w];
            }
        }
    }
    return dp[n, capacity];
}
最长公共子序列 (Longest Common Subsequence)

模板:最长公共子序列

public int LongestCommonSubsequence(string text1, string text2) {
    int m = text1.Length;
    int k = text2.Length;
    int[,] dp = new int[m + 1, k + 1];
    for (int i = 1; i <= m; i++) {
        for (int j = 1; j <= k; j++) {
            if (text1[i - 1] == text2[j - 1]) {
                dp[i, j] = dp[i - 1, j - 1] + 1;
            } else {
                dp[i, j] = Math.Max(dp[i - 1, j], dp[i, j - 1]);
            }
        }
    }
    return dp[m, k];
}
最长递增子序列 (Longest Increasing Subsequence)

模板:最长递增子序列

public int LengthOfLIS(int[] nums) {
    if (nums.Length == 0) return 0;
    int[] dp = new int[nums.Length];
    int maxLen = 1;
    for (int i = 0; i < nums.Length; i++) {
        dp[i] = 1;
        for (int j = 0; j < i; j++) {
            if (nums[i] > nums[j]) {
                dp[i] = Math.Max(dp[i], dp[j] + 1);
            }
        }
        maxLen = Math.Max(maxLen, dp[i]);
    }
    return maxLen;
}

3. 回溯法 (Backtracking)

排列与组合 (Permutations and Combinations)

模板:全排列

public IList<IList<int>> Permute(int[] nums) {
    List<IList<int>> res = new List<IList<int>>();
    bool[] used = new bool[nums.Length];
    Backtrack(nums, new List<int>(), used, res);
    return res;
}

private void Backtrack

(int[] nums, List<int> tempList, bool[] used, List<IList<int>> res) {
    if (tempList.Count == nums.Length) {
        res.Add(new List<int>(tempList));
    } else {
        for (int i = 0; i < nums.Length; i++) {
            if (used[i]) continue;
            used[i] = true;
            tempList.Add(nums[i]);
            Backtrack(nums, tempList, used, res);
            used[i] = false;
            tempList.RemoveAt(tempList.Count - 1);
        }
    }
}
子集 (Subsets)

模板:子集

public IList<IList<int>> Subsets(int[] nums) {
    List<IList<int>> res = new List<IList<int>>();
    Backtrack(nums, 0, new List<int>(), res);
    return res;
}

private void Backtrack(int[] nums, int start, List<int> tempList, List<IList<int>> res) {
    res.Add(new List<int>(tempList));
    for (int i = start; i < nums.Length; i++) {
        tempList.Add(nums[i]);
        Backtrack(nums, i + 1, tempList, res);
        tempList.RemoveAt(tempList.Count - 1);
    }
}
八皇后问题 (N-Queens)

模板:八皇后问题

public IList<IList<string>> SolveNQueens(int n) {
    List<IList<string>> res = new List<IList<string>>();
    char[][] board = new char[n][];
    for (int i = 0; i < n; i++) {
        board[i] = new char[n];
        Array.Fill(board[i], '.');
    }
    Backtrack(board, 0, res);
    return res;
}

private void Backtrack(char[][] board, int row, List<IList<string>> res) {
    if (row == board.Length) {
        List<string> tempList = new List<string>();
        foreach (var r in board) {
            tempList.Add(new string(r));
        }
        res.Add(tempList);
    } else {
        for (int col = 0; col < board.Length; col++) {
            if (IsValid(board, row, col)) {
                board[row][col] = 'Q';
                Backtrack(board, row + 1, res);
                board[row][col] = '.';
            }
        }
    }
}

private bool IsValid(char[][] board, int row, int col) {
    for (int i = 0; i < row; i++) {
        if (board[i][col] == 'Q') return false;
    }
    for (int i = row - 1, j = col - 1; i >= 0 && j >= 0; i--, j--) {
        if (board[i][j] == 'Q') return false;
    }
    for (int i = row - 1, j = col + 1; i >= 0 && j < board.Length; i--, j++) {
        if (board[i][j] == 'Q') return false;
    }
    return true;
}

4. 贪心算法 (Greedy Algorithm)

区间调度 (Interval Scheduling)

模板:区间调度问题

public int IntervalSchedule(int[][] intervals) {
    if (intervals.Length == 0) return 0;
    Array.Sort(intervals, (a, b) => a[1].CompareTo(b[1]));
    int end = intervals[0][1];
    int count = 1;
    for (int i = 1; i < intervals.Length; i++) {
        if (intervals[i][0] >= end) {
            end = intervals[i][1];
            count++;
        }
    }
    return count;
}
跳跃游戏 (Jump Game)

模板:跳跃游戏

public bool CanJump(int[] nums) {
    int maxReach = 0;
    for (int i = 0; i < nums.Length; i++) {
        if (i > maxReach) return false;
        maxReach = Math.Max(maxReach, i + nums[i]);
    }
    return true;
}
分配问题 (Assignment Problem)

模板:分配问题

public int AssignCookies(int[] g, int[] s) {
    Array.Sort(g);
    Array.Sort(s);
    int i = 0, j = 0;
    while (i < g.Length && j < s.Length) {
        if (g[i] <= s[j]) i++;
        j++;
    }
    return i;
}

5. 位运算 (Bit Manipulation)

基本位操作 (Basic Bit Operations)

模板:位操作模板

// 获取整数的二进制表示中1的个数
public int HammingWeight(uint n) {
    int count = 0;
    while (n != 0) {
        count++;
        n &= (n - 1);
    }
    return count;
}
异或操作 (XOR Operation)

模板:找出数组中唯一的一个重复数字

public int SingleNumber(int[] nums) {
    int result = 0;
    foreach (var num in nums) {
        result ^= num;
    }
    return result;
}

标签:return,nums,int,常见,++,算法,new,模板
From: https://www.cnblogs.com/sanzhixiaozhu/p/18278604

相关文章

  • 代码随想录算法训练营第四十三天 | 52.携带研究材料 518.零钱总和II 377.组合总和IV 7
    完全背包有N件物品和一个最多能被重量为W的背包,第i间物品的重量为weights[i],价值为value[i],每件物品都有无限个,求解将哪些物品装入背包里,物品价值总和最大遍历顺序:纯完全背包问题(即求装满背包后的最大价值)先遍历背包先遍历物品都是可以的和零一背包求解的最大不同就是遍历顺序......
  • 【算法炼金术】让数字起舞:两数相加的C++艺术
    【算法炼金术】让数字起舞:两数相加的C++艺术一、引言:编织数字的魔法二、技术概述:数字的交响乐章技术定义核心特性代码示例:原味经典三、技术细节:数字的幕后故事原理解析难点剖析四、实战应用:数字的舞台秀应用场景问题与解决方案问题:大数相加易溢出五、优化与改进:数字......
  • 【算法探秘】无重复字符的最长子串:解锁字符串中的独特风景
    【算法探秘】无重复字符的最长子串:解锁字符串中的独特风景一、引言:在字符的海洋中航行二、技术概述:独步字符森林技术定义核心特性代码示例:初尝甜蜜果实三、技术细节:拨开迷雾,洞悉本质原理解析难点剖析四、实战应用:字节跳跃,解密信息应用场景案例展示五、优化与改进:精益......
  • 【算法探险】在排序数组中查找元素的第一个和最后一个位置
    【算法探险】在排序数组中查找元素的第一个和最后一个位置一、引言:算法界的寻宝图二、技术概述:双剑合璧,左右逢源定义与核心特性优势代码示例:初露锋芒三、技术细节:抽丝剥茧,揭秘算法奥秘原理解析难点剖析四、实战应用:数字海洋,定位精准应用场景案例展示五、优化与改进:精......
  • 【算法】搜索插入位置:C++ 实现与深入理解
    【算法】搜索插入位置:C++实现与深入理解一、引言:C++算法的精髓与探索之旅二、技术概述:有序数组的探索定义与技术介绍核心特性和优势代码示例三、技术细节:二分查找的奥秘原理解析难点分析四、实战应用:排序数组的高效操作应用场景问题与解决方案五、优化与改进潜在问题......
  • salesforce学习笔记(8)- 邮件模板
    1、背景最近有这样一个需求:有两个自定义对象A和B,两对象关系为Master(A)-Detail(B),A的详细页面有B的关联列表。现在,要求从A页面的活动(Activity)Tab下,使用标准的电子邮件功能进行邮件发送,邮件内容要求包含对象A中的字段数据和对象B中的字段数据,邮件发送或者抄送给固定的6个人。......
  • 一个项目学习Vue3---Vue模板方法
     内容资源下载:关注公众号(资小库),下载相关资源分析下面一段代码,学习模板方法的可能的知识<template><div><div>将下面的msg属性放到上面来:{{msg}}</div><divv-html="htmlMsg"></div><divv-bind="id">这个地方绑定了一个ID{{id}}</div>......
  • Facebook几种常见的广告账户类型|Facebook代理kai户
    众所周知,Facebook是中国企业出海推广绕不开也是最重要的广告平台之一,为了满足不同广告主的需求,Facebook提供了多种广告账户类型。那么市面上各种不同的账户类型,怎样找到合适的呢,今天我们一起来了解一下吧~一、个人广告账户个人广告账户是最基本的Facebook广告账户类型,适用于......
  • (记得关注哦)国产商用密码:编程实现分组密码体制中的国密算法SM4。
    一、研究SM4算法(一)SM4算法的分组长度、密钥长度、S盒、轮函数①分组长度和密钥长度:分组长度:SM4算法的分组长度为128位(即16字节),这意味着它每次加密或解密的数据块大小为128位。密钥长度:SM4算法的密钥长度为128位(即16字节),与分组长度相同。......
  • Go1.19革命:打造超效能站点模板爬虫
    目录项目介绍环境配置核心依赖库爬虫实现HTTP请求数据解析数据存储运行与测试代码详解注意事项项目介绍本文将介绍如何使用Go1.19实现一个简单的站点模板爬虫。这个爬虫将访问指定的网站,获取页面内容并解析需要的数据,最终将数据存储在本地文件中。此教程适合具有基本G......