首页 > 其他分享 >封装图这一种数据结构

封装图这一种数据结构

时间:2022-10-20 11:31:45浏览次数:85  
标签:封装 cout int MAX 一种 exit 数据结构 ES SIZE

1、写了模板类,模板函数的定义需要写在.h文件中。

2、一个bool类型是1字节,然后都是用指针来声明数组大小,所以memset(exit, false, (sizeof exit)),错误,因为sizeof指针得到的是4,不是数组的大小,然后我memset(exit, false, (sizeof exit) * maxn),越界,因为4*maxn错了,bool数组大小是1。所以解决办法是,

sizeof(bool) * maxn || sizeof(exit[0]) * maxn(最好这样)

 

3、关键路径算法,最终都是对于每一个活动(每一条边)而言的。

①、ES,最早开始时间,对于顶点而言,那么一个拓扑排序后取max即可。表示这个顶点可以开始了,前导工作已经做完。边界是ES[0] = 0

②、LF,最晚完成时间,对于顶点而言,应该是,反向拓扑,反向拓扑可以记录拓扑序列,然后先进后出。然后对于每个顶点的出边,取那个MIN(ES[v] - e[j].w),也就是要留很多时间做那个耗时最大的项目。边界是LF[n] = ES[n](其他的不是)

 

有了前面两个,就可以求出下面的了,下面的可以对于每一条边来说

③、EF,最早完成时间,EF<u, v> = ES[u] + w[u][v];

④、LS,最晚开始时间,LS<u, v> = LF[v] - w[u][v];

另外:ES<u, v> = ES[u],LF<u, v> = LF[v],这个活动最晚完成是,下一个节点最晚完成,它也肯定要完成。(节点也完成不完成的概念,只是一个状态)

 

缓冲时间,SL<u, v> = LS<u, v> - ES<u, v> = LF<i, j> - EF<i, j>

缓冲时间为0的即为关键路径

 

4、如果使用CodeBlock,新建的.cpp文件需要拥有debug和relase功能

5、如果没用using namespace std;那么用endl的时候,要需要std::endl

封装图这一种数据结构_ide

封装图这一种数据结构_ide_02

#pragma once
//#ifndef info.h
//#define info.h
#include <algorithm>
#include <queue>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <stack>
#include <set>
#include <iomanip>
using namespace std;
namespace liuWeiMing {
template<typename T, const int MAX_NODE_SIZE = 10000, const int MAX_EDGE_SIZE = 50000> //默认最大100000个节点
class Graph {
private:
struct Edge {
int u, v, tonext;
T w;
char name;
} *e;
int num, *first, *tim;
bool *exit, *in;
T *dis;
pair<T, bool> getMinDistance_SPFA(int from, int to);
public:
Graph() {
e = new Edge[MAX_EDGE_SIZE];
first = new int[MAX_NODE_SIZE];
exit = new bool[MAX_NODE_SIZE];
dis = new T[MAX_NODE_SIZE];
tim = new int[MAX_NODE_SIZE];
in = new bool[MAX_NODE_SIZE];
//memset(exit, false, sizeof exit);
//memset(first, -1, sizeof first);
//指针不能直接sizeof
memset(exit, false, sizeof(exit[0]) * MAX_NODE_SIZE); //不能 * sizeof(bool *) = 4,指针大小就是4
memset(first, -1, (sizeof (first[0])) * MAX_NODE_SIZE);
num = 0;
}
~Graph() {
printf("本次使用完毕\n"); //内敛函数,写少一点,建议放在同一行
delete[] e;
delete[] first;
delete[] exit;
delete[] dis;
delete[] tim;
delete[] in;
}
bool addNode(int u);
bool delNode(int u);
bool addEdge(int u, int v, T w, char name = '\0');
void showMinDistance(int from, int to);
void showMainlyPath();
};
template<typename T, int MAX_NODE_SIZE, int MAX_EDGE_SIZE>
bool Graph<T, MAX_NODE_SIZE, MAX_EDGE_SIZE>::addNode(int u) {
if (exit[u]) {
printf("节点%d插入失败,节点已存在\n", u);
return false;
} else {
printf("节点%d插入成功\n", u);
exit[u] = true;
return true;
}

}

template<typename T, int MAX_NODE_SIZE, int MAX_EDGE_SIZE>
bool Graph<T, MAX_NODE_SIZE, MAX_EDGE_SIZE>::delNode(int u) {
if (!exit[u]) {
printf("删除节点失败,节点不存在\n");
return false;
} else {
printf("删除节点成功\n");
exit[u] = false;
return true;
}
}

template<typename T, int MAX_NODE_SIZE, int MAX_EDGE_SIZE>
bool Graph<T, MAX_NODE_SIZE, MAX_EDGE_SIZE>::addEdge(int u, int v, T w, char name) {
if (!exit[u] || !exit[v]) {
printf("插入边失败,其中一个节点不存在!!!\n");
return false;
}
e[num].u = u, e[num].v = v, e[num].w = w, e[num].name = name, e[num].tonext = first[u];
first[u] = num++;
return true;
}

template<typename T, int MAX_NODE_SIZE, int MAX_EDGE_SIZE>
pair<T, bool> Graph<T, MAX_NODE_SIZE, MAX_EDGE_SIZE>::getMinDistance_SPFA(int from, int to) {
/*
res information
0, true 代表存在负环
-1, true 代表起点被删除
-2, true 代表无法到达终点
ans, false 代表ok
*/
if (!exit[from]) return make_pair(-1, true);
for (int i = 0; i < MAX_NODE_SIZE; ++i) {
dis[i] = (T)0x3f3f3f3f;
tim[i] = 0;
in[i] = false;
}
queue<int> que;
while (!que.empty()) que.pop();
que.push(from), in[from] = true, dis[from] = 0, tim[from]++;
bool can = false;
while (!que.empty()) {
int u = que.front();
if (tim[u] > MAX_NODE_SIZE) return make_pair(0, true);
que.pop();
if (u == to) can = true;
for (int i = first[u]; ~i; i = e[i].tonext) {
//cout << u << " " << e[i].v << endl;
if (!exit[e[i].v]) continue;
if (dis[e[i].v] > dis[e[i].u] + e[i].w) {
dis[e[i].v] = dis[e[i].u] + e[i].w;
if (!in[e[i].v]) {
que.push(e[i].v);
in[e[i].v] = true;
tim[e[i].v]++;
}
}
}
in[u] = false;
}
if (!can) return make_pair(-2, true);
return make_pair(dis[to], false);
}

template<typename T, int MAX_NODE_SIZE, int MAX_EDGE_SIZE>
void Graph<T, MAX_NODE_SIZE, MAX_EDGE_SIZE>::showMinDistance(int from, int to) {
pair<T, bool> res = getMinDistance_SPFA(from, to);
if (res.second == false) {
cout << from << "去" << to << "的最短距离是:" << res.first << endl;
} else {
if (res.first == 0) {
cout << "路径存在负环" << endl;
} else if (res.first == -1) {
cout << "不存在起点" << endl;
} else {
cout << "无法到达终点" << endl;
}
}
}

template<typename T, int MAX_NODE_SIZE, int MAX_EDGE_SIZE>
void Graph<T, MAX_NODE_SIZE, MAX_EDGE_SIZE>::showMainlyPath() { //求图的关键路径
//ES,对于顶点来说,最早开始时间,拓扑一下取max
//LF, 对于顶点来说,最晚结束时间,用stack保存拓扑序列,反向拓扑
//
T *ES = new T[MAX_NODE_SIZE];
int *in = new int[MAX_NODE_SIZE];
memset(in, false, sizeof(in[0]) * MAX_NODE_SIZE);
for (int i = 0; i < MAX_NODE_SIZE; ++i) {
for (int j = first[i]; ~j; j = e[j].tonext) {
if (!exit[e[j].v]) continue;
in[e[j].v]++;
}
}
queue<int> que;
while (!que.empty()) que.pop();
for (int i = 0; i < MAX_NODE_SIZE; ++i) {
if (!exit[i]) continue;
if (in[i] == 0) {
que.push(i);
}
ES[i] = (T)0;
}
stack<int> st;
while (!st.empty()) st.pop();
while (!que.empty()) { // 拓扑求ES
int cur = que.front();
que.pop();
st.push(cur);
for (int i = first[cur]; ~i; i = e[i].tonext) {
if (!exit[e[i].v]) continue;
in[e[i].v]--;
ES[e[i].v] = max(ES[e[i].v], ES[cur] + e[i].w);
if (in[e[i].v] == 0) que.push(e[i].v);
}
}
T *ES_EDGE = new T[MAX_EDGE_SIZE];
for (int i = 0; i < MAX_NODE_SIZE; ++i) {
if (!exit[i]) continue;
for (int j = first[i]; ~j; j = e[j].tonext) {
ES_EDGE[j] = ES[i];
}
}
// 求LF
T *LF = new T[MAX_NODE_SIZE];
for (int i = 0; i < MAX_NODE_SIZE; ++i) LF[i] = (T)0x3f3f3f3f;
LF[st.top()] = ES[st.top()];
while (!st.empty()) {
int cur = st.top();
st.pop();
for (int i = first[cur]; ~i; i = e[i].tonext) {
LF[cur] = min(LF[cur], LF[e[i].v] - e[i].w);
}
}
T *LF_EDGE = new T[MAX_EDGE_SIZE];
T *EF_EDGE = new T[MAX_EDGE_SIZE];
T *LS_EDGE = new T[MAX_EDGE_SIZE];
set<pair<char, int>> ss;
for (int i = 0; i < MAX_NODE_SIZE; ++i) {
if (!exit[i]) continue;
for (int j = first[i]; ~j; j = e[j].tonext) {
if (!exit[e[j].v]) continue;
if (e[j].name != '\0') ss.insert(make_pair(e[j].name, j));
LF_EDGE[j] = LF[e[j].v];
EF_EDGE[j] = ES[i] + e[j].w;
LS_EDGE[j] = LF[e[j].v] - e[j].w;
}
}
int wide = 4;
cout << "活动:";
for (set<pair<char, int>>::iterator it = ss.begin(); it != ss.end(); ++it) {
cout << setw(4) << it->first;
}
cout << endl;

cout << "ES:";
for (set<pair<char, int>>::iterator it = ss.begin(); it != ss.end(); ++it) {
cout << setw(wide) << ES_EDGE[it->second];
}
cout << endl;

cout << "EF:";
for (set<pair<char, int>>::iterator it = ss.begin(); it != ss.end(); ++it) {
cout << setw(wide) << EF_EDGE[it->second];
}
cout << endl;

cout << "LS:";
for (set<pair<char, int>>::iterator it = ss.begin(); it != ss.end(); ++it) {
cout << setw(wide) << LS_EDGE[it->second];
}
cout << endl;

cout << "LF:";
for (set<pair<char, int>>::iterator it = ss.begin(); it != ss.end(); ++it) {
cout << setw(wide) << LF_EDGE[it->second];
}
cout << endl;


cout << "SL:";
for (set<pair<char, int>>::iterator it = ss.begin(); it != ss.end(); ++it) {
cout << setw(wide) << LS_EDGE[it->second] - ES_EDGE[it->second];
}
cout << endl;


cout << "关键路径是:";

for (set<pair<char, int>>::iterator it = ss.begin(); it != ss.end(); ++it) {
if ((int)(LS_EDGE[it->second] - ES_EDGE[it->second]) == 0) {
cout << e[it->second].name << "-->";
}
}
cout << endl;
delete[] ES;
delete[] LF;
delete[] ES_EDGE;
delete[] LF_EDGE;
delete[] LS_EDGE;
delete[] EF_EDGE;
delete[] in;
}
}

//#endif // !info.h

View Code

 

 

心形输出代码::

封装图这一种数据结构_ide

封装图这一种数据结构_ide_02

#include <bits/stdc++.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL;

bool love(double x, double y) {
// return (x*x+y*y-1)*(x*x+y*y-1)*(x*x+y*y-1)-x*x*y*y*y<=0;
return x * x + (pow(y - pow(x * x, 1.0 / 3), 2)) <= 1;
}


int main() {
#ifdef local
freopen("data.txt", "r", stdin);
// freopen("data.txt", "w", stdout);
#endif
for (double y = 2; y >= -2; y -= 0.1) {
for (double x = -1.2; x <= 1.2; x += 0.05) {
if (love(x, y)) printf("*");
else printf(" ");
}
printf("\n");
}
return 0;
}

View Code

​http://mathworld.wolfram.com/HeartCurve.html​

标签:封装,cout,int,MAX,一种,exit,数据结构,ES,SIZE
From: https://blog.51cto.com/u_15833059/5779609

相关文章