首页 > 其他分享 >COMM5000 Sandbox PwC Distribution

COMM5000 Sandbox PwC Distribution

时间:2024-07-01 19:43:30浏览次数:22  
标签:may Industry analysis will Sandbox hypothesis PwC Distribution your

ASSESSMENT GUIDE

COMM5000

Data Literacy

Sandbox PwC Distribution Project

Milestone 2 Information

Term 1, 2024

Assessment Administrative Details

Turnitin

Turnitin is an originality checking and plagiarism prevention tool that enables checking of submitted written work for improper citation or misappropriated content. Each Turnitin assignment is checked against other students' work, the Internet and key resources selected by your Course Coordinator.

If you are instructed to submit your assessment via Turnitin, you will find the link to the Turnitin submission in your Moodle course site. You can submit your assessment well before the deadline and use the Similarity Report to improve your academic writing skills before submitting your final version.

You can find out more information on the Turnitin information site for students.

Late Submissions

The parameters for late submissions are outlined in the UNSW Assessment Implementation Procedure. For COMM5000, if you submit your assessments after the due date, you will incur penalties for late submission unless you have Special Consideration (see below). Late submission is 5% per day (including weekends), calculated from the marks allocated to that assessment (not your grade). Assessments will not be accepted more than 5 days late.

Special Consideration

Special consideration is the process for assessing the impact of short-term events beyond your control (exceptional circumstances), on your performance in a specific assessment task.

What are circumstances beyond my control?

These are exceptional circumstances or situations that may:

• Prevent you from completing a course requirement,

•     Keep you from attending an assessment,

• Stop you from submitting an assessment,

• Significantly affect your assessment performance.

Available here is a list of circumstances that may be beyond your control. This is only a list of examples, and your exact circumstances may not be listed.

You can find more detail and the application form. on the Special Consideration site, or in the UNSW Special Consideration Application and Assessment Information for Students.

CASE STUDY INFORMATION-- PricewaterhouseCoopers (PwC)

Distribution Project Statement

Wholesale distribution companies typically purchase products from manufacturers/suppliers and then sell them to retail stores, making them available for consumers. Typically, wholesale distributors deal in large quantities of goods and are set up to have warehouses, distribution centres and logistic functions to manage and deliver inventory to retail stores. We are interested in better understanding the profitability of wholesale distribution companies.

Looking at the profitability of wholesale distribution companies globally over the past five years (PwC to provide excel containing raw data), is there a correlation (positive or negative) between their profitability and their local jurisdiction’s GDP and other key economic metrics or events (e.g., the COVID-19 pandemic). If so, what may be the reasons for the correlation? Please provide both quantitative and qualitative analysis supporting any findings.

In addition, with a straightforward business model, wholesale distributors aren’t involved in other key business functions such as manufacturing, R&D, retail trade etc. Are researchers able to review the publicly available information of key global distribution companies and corroborate their key functions, assets, and risks across various jurisdictions (e.g., comparing the activities performed, assets held, and risks borne by wholesale distributors based in the US vs China) to determine the other drivers of profitability that may exist? Please also provide any supporting analysis for these additional considerations.

The key jurisdictions we are interested in are the US, UK, China, Japan, South Korea, Australia, and New Zealand.

MILESTONE 2: Case Study Project Proposal

Report details

Week 7, Sunday 31th March 11:59PM

20%

Report: This is individual work. Reports will be checked for plagiarism.

1000-1500 words (not including tables, graphs, and references)

Via Moodle course site

Description of assessment task

In M1, you have spent time understanding the dataset of your assigned country or countries. M2 aims to use hypothesis testing to explore some of the patterns you may have observed in your analysis in M1.

To address the question of whether the profitability of wholesale distribution companies differs by country of jurisdiction, we can check bar charts of key profitability variables first by country and for some industries.   This is what some of you were able to do in M1, and others will be describing while preparing for M2. However, this descriptive analysis needs to be given a statistical analysis. This will be achieved by conducting significance hypothesis tests to evaluate the evidence from the data and measure uncertainty around the conclusions made.

(A) Country and profits variables

For M2, you are required to consider the following:

Profitability variables:

-     Operating Revenue ($’000)

-     EBITDA: earnings before interest, taxes, depreciation, and amortisation

https://www.investopedia.com/terms/e/ebitda.asp

Countries:

Each student MUST use the TWO countries assigned to then in the data allocation spreadsheet for M1.

Note: Those who want to prepare an analysis for PwC showcase should add at least one more country (of

your choice) to the analysis. We will select some of these M2 reports and send to PwC for feedback. But this

will not affect the grade of M2! (PLEASE IGNORE IF YOU ONLY WANT TO DEAL WITH THE COURSE REQUIREMENT)

(B) Industry Classification

A random selection of THREE industries have been allocated to you in the Country/Year/Industries allocation M2. Please check that your name is in the sheet. If not email [email protected] ASAP!

Choose TWO industries of the three to analyse for M2. The third will be added to the analysis in final report.

(C) Economic Indicators data:

PwC indicated that they wish to check whether some of the economic indicators of a country are factors that drive profitability. You can refer to the Data Economy 2017-2022 file provided with M1.

Statistical Analysis Required for M2:

The task in M2 is to check if:

(1) there are differences between the TWO countries assigned to you in M1 (analyse only the year 2019) in the TWO profitability measures specified in (A) above ;

-     (2) there is statistical evidence for an Covid effect in the TWO countries assigned to you (in M1). Analyse the two profits measures specified in (A). Do this for full sample and the THREE industries (assigned to you).

In M1, you compared the average profits between 2019 and 2022. You may have not seen a qualitatively big difference. In M2, you will be comparing the year 2019 to the year 2020.

Those who want to explore more for PwC making sense analysis should consider how Covid 19 has impacted different countries GDP:

Australia: It seems 2020 is the comparison year, The economy seems to have recovered to pre-Covid levels in 2022.

China: For China, there seems to be an impact in 2020 and then in 2022.

UKNZUSSimilar to Australia, the biggest impact felt in 2020 with levels almost returning to pre-Covid (or higher)levels in 2022.

Run significance hypothesis tests of a series of null hypotheses of equal profitability between your selected countries/years.

1.   Formulate the null hypothesis and the alternative hypothesis for each test. Given what you see in the bar charts, you may decide whether to run a one-tailed or two-tailed test.

2.   State the assumptions under the null hypothesis and consider a test of equal means given by:

Country comparison:

Covid effect test:

Given the large sample sizes in this case, the test statistic above is normally distributed as N(0,1).

3.   State the conclusion of the tests using the p-value method. Use a 1% and 5% significance level to illustrate the test conclusions.

Structure of the report

* The introduction You should briefly summarise the main findings in M1 and how you will approach the analysis of the country effect and Covid effect in M2.

Hypothesis testing: Describe the purpose of hypothesis testing and how it will help you further your analysis of the objectives stated by PwC, especially for their point about the country of jurisdiction's effect on profitability and about the effect of Covid 19.

Clearly state your null hypothesis, and especially the alternative(s). One-sided alternatives may be useful in driving links between a country's economic conditions and its wholesale companies' profitability.

For example, if you are testing a null that average profits are the same in China and Australia, but you reject in favour of a one-sided hypothesis that profitability is larger/or smaller in Australia. You may try to check what differs in between China and Australia in terms of their key economic indicators. If Australia’s GDP growth is higher in that year and you suspect that to be driving higher profits, you can argue for an ‘>’ alternative in favour of Australia.  If you do not believe there is any argument for a one-sided alternative, then a two-sided is fine. It

Explain the rationale of the test statistic and present your test’s finding using the  p-value method.   Your analysis should show that you understand the assumptions behind the tests and the considerations around type

1 and type 2 errors in this case.

This doesn’t need to be long but stated in your description of what you will achieve from significance hypothesis testing for both the country effect and the Covid effect. Remember to state any statistical considerations that may make your tests poor regarding power.

You may choose to present your test decision for the 2 countries in a table:

Table 1: Country Effect summary results of hypothesis testing

 

 

Full sample

Industry 1

Industry 2

 

Country 2 (2019)

Full sample

Reject/not reject p-value

 

 

Industry 1

 

Reject/not reject p-value

 

Industry 2

 

 

Reject/not reject p-value

You can do the same to summarise your test results for the Covid effect (by country).

Table 2: Covid19 Effect summary results of hypothesis testing for ‘Country 1’

 

Country 1 year 2019

Full sample

Industry 1

Industry 2

 

Country 1 Year 2020

Full sample

Reject/not reject p-value

 

 

Industry 1

 

Reject/not reject p-value

 

Industry 2

 

 

Reject/not reject p-value

Table 3: Covid19 Effect summary results of hypothesis testing for ‘Country 2’

 

Country 2 year 2019

Full sample

Industry 1

Industry 2

 

Country 2 Year 2020

Full sample

Reject/not reject p-value

 

 

Industry 1

 

Reject/not reject p-value

 

Industry 2

 

 

Reject/not reject p-value

You may find that the effect is significant for a country and a specific industry. Again, use the bar chart to help you choose what variable/industry and year you want to use for the significance testing.

Conclusion: The conclusion in M2 should present the key ideas you have been able to extract from your data analysis this far including any key findings from M1 that you can support statistically.

It would be best if you also discussed the plan for the final data modelling. Since we are gearing up to learn about linear regression, your conclusions should indicate how you plan to model the relationship between the profits variable(s) and the company characteristics.  Especially, you should have a clear plan about whether to add the country of jurisdiction and Covid effect in the regression model.

 

标签:may,Industry,analysis,will,Sandbox,hypothesis,PwC,Distribution,your
From: https://www.cnblogs.com/qq99515681/p/18278682

相关文章

  • [AAAI2024]Out-of-Distribution Detection in Long-Tailed Recognition with Calibrat
    这篇文章设置的问题是:考虑长尾分布的训练集下,对测试集上的OOD样本进行检测。作者在训练集中引入了openset样本学习异常表征,以OCL(OutlierClassLearn)为baseline,训练时引入prototype方法,推理时对logits进行调整校准。问题背景DNNs会把OOD(out-of-distribution)样本误分类为ID(in-di......
  • Sandbox | 免费在线的生信交互学习平台
    Sandbox.bio是一个生物信息学沙盒平台,允许用户在安全隔离的环境中运行生物信息学实验。它提供各种工具和资源,包括数据库、算法和工具包,可用于各种生物信息学任务,例如数据分析、模型构建和机器学习。网站:https://sandbox.bio/可以从零练习Linux基本操作,以及生信相关的一些基础......
  • 1.安装opencv-python失败的解决办法 2.pip 安装失败 3.WARNING:Ignoring invalid distr
    问题:安装opencv-python失败:用:pipinstall-ihttps://pypi.tuna.tsinghua.edu.cn/simpleopencv-python安装会被卡在Buildingwheelforopencv-python(pyproject.toml)...之后便安装失败。使用顺序:先使用方法二,再使用方法一(有可能不会解决问题),用方法三查看问题出......
  • [ICML2022]Open-Sampling Exploring Out-of-Distribution Data for Re-balancing Long
    引入开集样本训练模型有点像dropout,“破坏”某些模型参数防止尾部类的过拟合Motivation长尾学习中的训练数据集分布不平衡的问题,解决方法之一是重采样。重采样主要对于尾部类重复采用,但这种做法往往会导致尾部类的过拟合。为了缓解过拟合[2](Rethinkingthevalueoflabelsf......
  • 微前端学习笔记(3):前端沙箱之JavaScript的sandbox(沙盒/沙箱)
    sandboxSandbox(沙盒/沙箱)的主要目的是为了安全性,以防止恶意代码或者不受信任的脚本访问敏感资源或干扰其他应用程序的执行。通过在沙盒环境中运行,可以确保代码的行为被限制在一个安全的范围内,防止其超出预期权限进行操作。沙箱(Sandbox)是一种安全机制,目的是让程序运行在一个相对......
  • TexQ: Zero-shot Network Quantization with Texture Feature Distribution Calibrati
    我们使用以下这六个标准对网络量化和相关领域的研究进行分类。以下是每个标准的详细解释,并结合了参考文献中的相关研究:研究领域:该标准将研究大致分为三个主要领域:量化:这是上传论文的核心焦点。它涉及减少模型参数的位宽(例如,从32位浮点数到4位整数)等技术,以压缩模型并提......
  • PEnum_DistributionSystemElectricalCategory
    PEnum_DistributionSystemElectricalCategory  TypevaluesTypeDescriptionEXTRALOWVOLTAGENodescriptionavailable.HIGHVOLTAGENodescriptionavailable.LOWVOLTAGENodescriptionavailable.OTHERrequiredcategorynotonscaleNOTKN......
  • LeetCode 1168. Optimize Water Distribution in a Village
    原题链接在这里:https://leetcode.com/problems/optimize-water-distribution-in-a-village/description/题目:Thereare n housesinavillage.Wewanttosupplywaterforallthehousesbybuildingwellsandlayingpipes.Foreachhouse i,wecaneitherbuildaw......
  • 题解【CF798D Mike and distribution】
    题目链接思考方向:构造方法满足\(A\)的要求,再满足\(B\)的要求。如果只考虑\(A\),有一种显然的方案:将\(A\)从大到小排序,选出前\(\left\lfloor\frac{n}{2}\right\rfloor+1\)大的即可。但这样显然难以扩展,所以需要另寻方案。由于题目提供了额外的\(+1\),所以先将最大的......
  • distribution镜像仓库代理缓存
    本文在《学习distribution》之后,梳理一份基础的用于代理远端仓库的基础配置。配置需求镜像地址在远端定期清理缓存优先没有任何中间件服务需要健康检查需要暴露prometheus指标优先外部正式的HTTPS证书配置明细version:0.1log:level:debugfields:service......