思路
首先,不难发现,对于本题将 \(a,b\) 合成一个序列,并按照 \(a_i\) 排序的答案不会发生变化。所以,我们可以直接排序,那么,我们当前枚举到的 \(a_i\) 就是当前的 \(\max(a_i)\)。
定义 \(dp_{i,j,0/1}\) 表示在 \(1 \sim i\) 中,选择的 \(b_i\) 之和为 \(j\),并且第 \(i\) 个数 不选/选 的方案数。
不难得出状态转移方程:
\[ \left\{\begin{matrix} dp_{i,j,0} = dp_{i - 1,j,0} + dp_{i - 1,j,1} \\ dp_{i,j,1} = dp_{i - 1,j - b_i,0} + dp_{i - 1,j - b_i,1} \end{matrix}\right. \]然后来考虑一下 \(i,j\) 的边界问题,\(i\) 明显是 \(1 \leq i \leq n\),而 \(j\) 要满足 \(\sum_{k}b_k \leq \max(a_k)\) 的条件,所以 \(j\) 不能大于 \(\max(a_i)\),由此,\(1 \leq j \leq \max(a_i)\)。
递推起点为:\(dp_{0,0,0} = 1\)。答案为 \(\sum_{i = 1}^n\sum_{j = 1}^{a_i}dp_{i,j}\)。
Code
#include <bits/stdc++.h>
#define int long long
#define fst first
#define snd second
#define re register
using namespace std;
typedef pair<int,int> pii;
const int N = 5010,mod = 998244353;
int n,ans;
int dp[N][N][2];
pii arr[N];
inline int read(){
int r = 0,w = 1;
char c = getchar();
while (c < '0' || c > '9'){
if (c == '-') w = -1;
c = getchar();
}
while (c >= '0' && c <= '9'){
r = (r << 1) + (r << 3) + (c ^ 48);
c = getchar();
}
return r * w;
}
signed main(){
dp[0][0][0] = 1;
n = read();
for (re int i = 1;i <= n;i++) arr[i].fst = read();
for (re int i = 1;i <= n;i++) arr[i].snd = read();
sort(arr + 1,arr + n + 1);
for (re int i = 1;i <= n;i++){
for (re int j = 0;j <= arr[n].fst;j++){
dp[i][j][0] = (dp[i - 1][j][0] + dp[i - 1][j][1]) % mod;
if (j >= arr[i].snd) dp[i][j][1] = (dp[i - 1][j - arr[i].snd][0] + dp[i - 1][j - arr[i].snd][1]) % mod;
}
}
for (re int i = 1;i <= n;i++){
for (re int j = 1;j <= arr[i].fst;j++) ans = (ans + dp[i][j][1]) % mod;
}
printf("%lld",ans);
return 0;
}
标签:arr,abc216,leq,ABC216F,题解,snd,int,dp,define
From: https://www.cnblogs.com/WaterSun/p/18261947