首页 > 其他分享 >PyTorch+CNN进行猫狗识别项目

PyTorch+CNN进行猫狗识别项目

时间:2024-06-21 15:30:32浏览次数:28  
标签:loss 2819 Epoch ------------------------------- Test PyTorch transforms CNN 识别

任务介绍

数据结构为:

big_data
    ├── train
    │   └── cat
    │       └── XXX.jpg(每个文件夹含若干张图像)
    │   └── dog
    │       └── XXX.jpg(每个文件夹含若干张图像)
    ├── val
    │   └── cat
    │       └── XXX.jpg(每个文件夹含若干张图像)
    │   └── dog
    └── ───    └── XXX.jpg(每个文件夹含若干张图像)

需要对train数据集进行训练,达到给定val数据集中的一张猫 / 狗的图片,识别其是猫还是狗

数据预处理

引入头文件

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda, Compose
import matplotlib.pyplot as plt
import torchvision.transforms as transforms
import numpy as np

数据读取与预处理

在这里使用torch.utils.data.DataLoader()方法,把训练数据分成多个小组,此函数每次抛出一组数据,直至把所有的数据都抛出

常见参数介绍如下(借鉴自:传送门):

1、dataset:(数据类型 dataset)

输入的数据类型,这里是原始数据的输入,PyTorch内也有这种数据结构

2、batch_size:(数据类型 int)

批训练数据量的大小,根据具体情况设置即可(默认:1)
PyTorch训练模型时调用数据不是一行一行进行的(这样太没效率),而是一捆一捆来的,这里就是定义每次喂给神经网络多少行数据,其每次随机读取大小为batch_size,如果dataset中的数据个数不是batch_size的整数倍,则最后一次把剩余的数据全部输出,若想把剩下的不足batch size个的数据丢弃,则将drop_last设置为True,会将多出来不足一个batch的数据丢弃

3、shuffle:(数据类型 bool)

洗牌,默认设置为False
在每次迭代训练时是否将数据洗牌,将输入数据的顺序打乱,是为了使数据更有独立性,但如果数据是有序列特征的,就不要设置成True了

4、collate_fn:(数据类型 callable)

将一小段数据合并成数据列表,默认设置是False
如果设置成True,系统会在返回前会将张量数据(Tensors)复制到CUDA内存中

5、batch_sampler:(数据类型 Sampler)

批量采样,默认设置为None
但每次返回的是一批数据的索引(注意:不是数据),其和batch_size、shuffle 、sampler and drop_last参数是不兼容的

6、sampler:(数据类型 Sampler)

采样,默认设置为None
根据定义的策略从数据集中采样输入,如果定义采样规则,则洗牌(shuffle)设置必须为False。

7、drop_last:(数据类型 bool)

丢弃最后数据,默认为False
设置了 batch_size 的数目后,最后一批数据未必是设置的数目,有可能会小些,选择这你是否需要丢弃这批数据

代码:

train_datadir = './big_data/train/'
test_datadir  = './big_data/val/'

# https://pytorch-cn.readthedocs.io/zh/latest/torchvision/torchvision-transform/
# https://pytorch.org/vision/stable/auto_examples/plot_transforms.html#sphx-glr-auto-examples-plot-transforms-py
# https://pytorch.org/vision/stable/transforms.html
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.RandomRotation(degrees=(-10, 10)),  #随机旋转,-10到10度之间随机选
    # transforms.RandomHorizontalFlip(p=0.5),  #随机水平翻转 选择一个概率概率
    # transforms.RandomVerticalFlip(p=0.5),  #随机垂直翻转(效果可能会变差)
    transforms.RandomPerspective(distortion_scale=0.6, p=1.0), # 随机视角
    transforms.GaussianBlur(kernel_size=(5, 9), sigma=(0.1, 5)),  #随机选择的高斯模糊模糊图像
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的
])

test_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

train_data = datasets.ImageFolder(train_datadir,transform=train_transforms)

test_data  = datasets.ImageFolder(test_datadir,transform=test_transforms)

train_loader = torch.utils.data.DataLoader(train_data,
                                          batch_size=4,
                                          shuffle=True,
                                          num_workers=1)
test_loader  = torch.utils.data.DataLoader(test_data,
                                          batch_size=4,
                                          shuffle=True,
                                          num_workers=1)

查看每组数据的格式:

for X, y in test_loader:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

输出:

Shape of X [N, C, H, W]:  torch.Size([4, 3, 224, 224])
Shape of y:  torch.Size([4]) torch.int64

图像可视化

def im_convert(tensor):
    """ 展示数据"""
#     tensor.clone()  返回tensor的拷贝,返回的新tensor和原来的tensor具有同样的大小和数据类型
#     tensor.detach() 从计算图中脱离出来。
    image = tensor.to("cpu").clone().detach()
    
#     numpy.squeeze()这个函数的作用是去掉矩阵里维度为1的维度
    image = image.numpy().squeeze()
    
#     将npimg的数据格式由(channels,imagesize,imagesize)转化为(imagesize,imagesize,channels),
#     进行格式的转换后方可进行显示
    image = image.transpose(1,2,0)
    
#     和标准差操作正好相反即可
    image = image * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))
    
#     使用image.clip(0, 1) 将数据 限制在0和1之间
    image = image.clip(0, 1)

    return image

fig=plt.figure(figsize=(20, 20))
columns = 2
rows = 2

dataiter = iter(train_loader)
inputs, classes = dataiter.next()

for idx in range (columns*rows):
    ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[])
    if classes[idx] == 0:
        ax.set_title("cat", fontsize = 35)
    else:
        ax.set_title("dog", fontsize = 35)
    plt.imshow(im_convert(inputs[idx]))
plt.savefig('pic1.jpg', dpi=600) #指定分辨率保存
plt.show()


输出:


建立模型

import torch.nn.functional as F

# 找到可以用于训练的 GPU
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

# 定义模型
class LeNet(nn.Module):
    # 一般在__init__中定义网络需要的操作算子,比如卷积、全连接算子等等
    def __init__(self):
        super(LeNet, self).__init__()
        # Conv2d的第一个参数是输入的channel数量,第二个是输出的channel数量,第三个是kernel size
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        # 由于上一层有16个channel输出,每个feature map大小为53*53,所以全连接层的输入是16*53*53
        self.fc1 = nn.Linear(16*53*53, 120)
        self.fc2 = nn.Linear(120, 84)
        # 最终有10类,所以最后一个全连接层输出数量是10
        self.fc3 = nn.Linear(84, 2)
        self.pool = nn.MaxPool2d(2, 2)
    # forward这个函数定义了前向传播的运算,只需要像写普通的python算数运算那样就可以了
    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = self.pool(x)
        x = F.relu(self.conv2(x))
        x = self.pool(x)
        # 下面这步把二维特征图变为一维,这样全连接层才能处理
        x = x.view(-1, 16*53*53)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

model = LeNet().to(device)
print(model)

输出:

Using cuda device
LeNet(
  (conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
  (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
  (fc1): Linear(in_features=44944, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=2, bias=True)
  (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)

损失函数与优化器:

loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)


定义训练函数

def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    model.train()
    for batch, (X, y) in enumerate(dataloader):
        X, y = X.to(device), y.to(device)

        # 计算预测误差
        pred = model(X)
        loss = loss_fn(pred, y)

        # 反向传播
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if batch % 100 == 0:
            loss, current = loss.item(), batch * len(X)
            print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")

定义测试函数

def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    model.eval()
    test_loss, correct = 0, 0
    with torch.no_grad():
        for X, y in dataloader:
            X, y = X.to(device), y.to(device)
            pred = model(X)
            test_loss += loss_fn(pred, y).item()
            correct += (pred.argmax(1) == y).type(torch.float).sum().item()
    test_loss /= num_batches
    correct /= size
    print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

进行训练

在单个训练循环中,模型对训练数据集进行预测(分批提供给它),并反向传播预测误差从而调整模型的参数

epochs = 20
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(train_loader, model, loss_fn, optimizer)
    test(test_loader, model, loss_fn)
print("Done!")

输出: 

Epoch 1
-------------------------------
loss: 0.697169  [    0/ 2819]
loss: 0.717117  [  400/ 2819]
loss: 0.692842  [  800/ 2819]
loss: 0.663078  [ 1200/ 2819]
loss: 0.687370  [ 1600/ 2819]
loss: 0.727401  [ 2000/ 2819]
loss: 0.715081  [ 2400/ 2819]
loss: 0.640342  [ 2800/ 2819]
Test Error: 
 Accuracy: 71.1%, Avg loss: 0.662693 

Epoch 2
-------------------------------
loss: 0.603678  [    0/ 2819]
loss: 0.574420  [  400/ 2819]
loss: 0.609898  [  800/ 2819]
loss: 0.756877  [ 1200/ 2819]
loss: 0.612366  [ 1600/ 2819]
loss: 0.538443  [ 2000/ 2819]
loss: 0.406403  [ 2400/ 2819]
loss: 0.762628  [ 2800/ 2819]
Test Error: 
 Accuracy: 73.8%, Avg loss: 0.603772 

Epoch 3
-------------------------------
loss: 0.532889  [    0/ 2819]
loss: 0.627735  [  400/ 2819]
loss: 0.573161  [  800/ 2819]
loss: 0.369012  [ 1200/ 2819]
loss: 0.450293  [ 1600/ 2819]
loss: 0.562393  [ 2000/ 2819]
loss: 0.436040  [ 2400/ 2819]
loss: 0.464255  [ 2800/ 2819]
Test Error: 
 Accuracy: 63.2%, Avg loss: 0.625167 

Epoch 4
-------------------------------
loss: 0.561073  [    0/ 2819]
loss: 0.684834  [  400/ 2819]
loss: 0.419241  [  800/ 2819]
loss: 0.829945  [ 1200/ 2819]
loss: 0.486006  [ 1600/ 2819]
loss: 0.258347  [ 2000/ 2819]
loss: 0.322795  [ 2400/ 2819]
loss: 0.767529  [ 2800/ 2819]
Test Error: 
 Accuracy: 72.6%, Avg loss: 0.572731 

Epoch 5
-------------------------------
loss: 0.542559  [    0/ 2819]
loss: 0.662963  [  400/ 2819]
loss: 0.488824  [  800/ 2819]
loss: 0.542599  [ 1200/ 2819]
loss: 0.584228  [ 1600/ 2819]
loss: 0.807718  [ 2000/ 2819]
loss: 1.087557  [ 2400/ 2819]
loss: 0.384040  [ 2800/ 2819]
Test Error: 
 Accuracy: 65.2%, Avg loss: 0.610963 

Epoch 6
-------------------------------
loss: 0.372240  [    0/ 2819]
loss: 0.391429  [  400/ 2819]
loss: 0.355201  [  800/ 2819]
loss: 0.504742  [ 1200/ 2819]
loss: 0.190237  [ 1600/ 2819]
loss: 0.808446  [ 2000/ 2819]
loss: 0.189117  [ 2400/ 2819]
loss: 0.520030  [ 2800/ 2819]
Test Error: 
 Accuracy: 78.8%, Avg loss: 0.481039 

Epoch 7
-------------------------------
loss: 0.849491  [    0/ 2819]
loss: 0.462627  [  400/ 2819]
loss: 0.917399  [  800/ 2819]
loss: 1.132419  [ 1200/ 2819]
loss: 0.308156  [ 1600/ 2819]
loss: 0.763916  [ 2000/ 2819]
loss: 0.360583  [ 2400/ 2819]
loss: 0.164551  [ 2800/ 2819]
Test Error: 
 Accuracy: 79.0%, Avg loss: 0.454252 

Epoch 8
-------------------------------
loss: 0.255556  [    0/ 2819]
loss: 0.510223  [  400/ 2819]
loss: 0.271078  [  800/ 2819]
loss: 0.164843  [ 1200/ 2819]
loss: 0.536149  [ 1600/ 2819]
loss: 0.621327  [ 2000/ 2819]
loss: 0.644994  [ 2400/ 2819]
loss: 0.227701  [ 2800/ 2819]
Test Error: 
 Accuracy: 82.3%, Avg loss: 0.397003 

Epoch 9
-------------------------------
loss: 1.072562  [    0/ 2819]
loss: 0.368804  [  400/ 2819]
loss: 0.297367  [  800/ 2819]
loss: 0.511167  [ 1200/ 2819]
loss: 0.244405  [ 1600/ 2819]
loss: 0.233891  [ 2000/ 2819]
loss: 0.174815  [ 2400/ 2819]
loss: 0.492107  [ 2800/ 2819]
Test Error: 
 Accuracy: 81.8%, Avg loss: 0.405467 

Epoch 10
-------------------------------
loss: 0.676339  [    0/ 2819]
loss: 0.423010  [  400/ 2819]
loss: 0.472313  [  800/ 2819]
loss: 0.124012  [ 1200/ 2819]
loss: 0.132490  [ 1600/ 2819]
loss: 0.374766  [ 2000/ 2819]
loss: 0.202931  [ 2400/ 2819]
loss: 0.639156  [ 2800/ 2819]
Test Error: 
 Accuracy: 86.4%, Avg loss: 0.352187 

Epoch 11
-------------------------------
loss: 0.164241  [    0/ 2819]
loss: 0.402599  [  400/ 2819]
loss: 0.075091  [  800/ 2819]
loss: 0.253864  [ 1200/ 2819]
loss: 0.227414  [ 1600/ 2819]
loss: 0.188128  [ 2000/ 2819]
loss: 0.437947  [ 2400/ 2819]
loss: 0.231940  [ 2800/ 2819]
Test Error: 
 Accuracy: 86.7%, Avg loss: 0.354747 

Epoch 12
-------------------------------
loss: 0.411373  [    0/ 2819]
loss: 0.596428  [  400/ 2819]
loss: 0.419576  [  800/ 2819]
loss: 0.983684  [ 1200/ 2819]
loss: 0.713979  [ 1600/ 2819]
loss: 0.491828  [ 2000/ 2819]
loss: 0.196907  [ 2400/ 2819]
loss: 0.087960  [ 2800/ 2819]
Test Error: 
 Accuracy: 86.4%, Avg loss: 0.325611 

Epoch 13
-------------------------------
loss: 0.368461  [    0/ 2819]
loss: 0.276991  [  400/ 2819]
loss: 0.715205  [  800/ 2819]
loss: 0.151266  [ 1200/ 2819]
loss: 0.474812  [ 1600/ 2819]
loss: 0.868296  [ 2000/ 2819]
loss: 0.097645  [ 2400/ 2819]
loss: 0.232329  [ 2800/ 2819]
Test Error: 
 Accuracy: 89.3%, Avg loss: 0.286453 

Epoch 14
-------------------------------
loss: 0.297342  [    0/ 2819]
loss: 0.082402  [  400/ 2819]
loss: 0.270308  [  800/ 2819]
loss: 0.064577  [ 1200/ 2819]
loss: 0.175540  [ 1600/ 2819]
loss: 0.373381  [ 2000/ 2819]
loss: 0.661588  [ 2400/ 2819]
loss: 0.223183  [ 2800/ 2819]
Test Error: 
 Accuracy: 86.6%, Avg loss: 0.303336 

Epoch 15
-------------------------------
loss: 0.435931  [    0/ 2819]
loss: 0.115896  [  400/ 2819]
loss: 0.582083  [  800/ 2819]
loss: 0.094237  [ 1200/ 2819]
loss: 0.191783  [ 1600/ 2819]
loss: 0.229429  [ 2000/ 2819]
loss: 0.657790  [ 2400/ 2819]
loss: 0.540002  [ 2800/ 2819]
Test Error: 
 Accuracy: 89.7%, Avg loss: 0.263210 

Epoch 16
-------------------------------
loss: 0.054571  [    0/ 2819]
loss: 0.298561  [  400/ 2819]
loss: 0.043506  [  800/ 2819]
loss: 0.380746  [ 1200/ 2819]
loss: 0.167052  [ 1600/ 2819]
loss: 0.391230  [ 2000/ 2819]
loss: 0.057670  [ 2400/ 2819]
loss: 0.131060  [ 2800/ 2819]
Test Error: 
 Accuracy: 88.3%, Avg loss: 0.279989 

Epoch 17
-------------------------------
loss: 0.064786  [    0/ 2819]
loss: 0.745590  [  400/ 2819]
loss: 0.211468  [  800/ 2819]
loss: 0.314401  [ 1200/ 2819]
loss: 0.139008  [ 1600/ 2819]
loss: 0.461783  [ 2000/ 2819]
loss: 0.654826  [ 2400/ 2819]
loss: 0.506236  [ 2800/ 2819]
Test Error: 
 Accuracy: 90.7%, Avg loss: 0.226764 

Epoch 18
-------------------------------
loss: 0.643280  [    0/ 2819]
loss: 0.049473  [  400/ 2819]
loss: 0.027292  [  800/ 2819]
loss: 0.074732  [ 1200/ 2819]
loss: 0.054178  [ 1600/ 2819]
loss: 0.484333  [ 2000/ 2819]
loss: 0.103221  [ 2400/ 2819]
loss: 0.521000  [ 2800/ 2819]
Test Error: 
 Accuracy: 90.4%, Avg loss: 0.238688 

Epoch 19
-------------------------------
loss: 0.045256  [    0/ 2819]
loss: 0.360988  [  400/ 2819]
loss: 0.541000  [  800/ 2819]
loss: 0.484565  [ 1200/ 2819]
loss: 0.060333  [ 1600/ 2819]
loss: 0.108621  [ 2000/ 2819]
loss: 0.137073  [ 2400/ 2819]
loss: 0.015121  [ 2800/ 2819]
Test Error: 
 Accuracy: 91.0%, Avg loss: 0.225625 

Epoch 20
-------------------------------
loss: 0.140982  [    0/ 2819]
loss: 0.092246  [  400/ 2819]
loss: 0.072535  [  800/ 2819]
loss: 0.215292  [ 1200/ 2819]
loss: 0.099996  [ 1600/ 2819]
loss: 0.126051  [ 2000/ 2819]
loss: 0.009734  [ 2400/ 2819]
loss: 0.050575  [ 2800/ 2819]
Test Error: 
 Accuracy: 89.7%, Avg loss: 0.244002 

Done!

保存完整模型

torch.save(model, "model.pth")
# 读取
# model = torch.load("model.pth")

标签:loss,2819,Epoch,-------------------------------,Test,PyTorch,transforms,CNN,识别
From: https://blog.csdn.net/qq_38140936/article/details/139861819

相关文章

  • Node.js文字识别接口、文字录入、在线免费文字识别接口
    很多时候,“懒”并不是贬义词,只是人们在处理一些事情的时候,只想流程再简化一点,等待的时间再少一点,完成的速度再快一点。譬如二十几年前,无论严寒酷暑,人们想买东西只能走出家门,而且你所去的商店或者市场的产品可能并不尽如人意。反观现在,人们足不出户,可以通过电商平台货比N家,各种......
  • Node.js车牌识别、文档识别、OCR API-自动化录入信息
    为什么人工智能如此受关注?因为人工智能技术在图片处理以及在感知与认知等领域的不断突破,带来更高的效率。没错,智能机器人、人工智能技术衍生的产品已经开始替代人的工作。文字录入工作较为显著,OCR技术成为手动录入的杀手锏,图片识别、扫描识别多样化的解决方案层出不穷。......
  • 验证码的识别和运用
    验证码的主要目的是强制人机交互来抵御机器自动化攻击,为了确保服务器系统的稳定和用户信息的安全,越来越多的网站采用了验证码技术。图片验证码是目前最常用的一种,本文也主要讨论这种验证码的识别。最近在一个爬虫项目中遇到了验证码,需要机器自动识别绕过。这些验证码大都分辨率都......
  • [模式识别复习笔记] 第5章 贝叶斯分类器
    1.贝叶斯分类器1.1贝叶斯公式假设有一个试验的样本空间为\(S\),记\(B_1,B_2,\ldots,B_c\)为\(S\)的一个划分,\(A\)为试验的条件,且\(P(A)\not=0\),则:\[P(B_i|A)=\frac{P(B_i)P(A|B_i)}{P(A)}=\frac{P(B_i)P(A|B_i)}{\sum_{j=1}^{c}P(B_j)P(A|B_j)}\]\(P(B_i)......
  • linux下PyCharm无法识别导入包的问题(xlsxwriter)
    在linux安装pycharm,有的包无法识别自动安装,并且在pycharm的python软件包安装窗口可以搜索出对应软件包,但是点击安装无反应。在终端使用pip/pip3installxxx,提示error:externally-managed-environmentThisenvironmentisexternallymanagedToinstallPythonpackagessyst......
  • 基于python-深度学习的混凝土马路和泥地马路识别-含数据集+pyqt界面
    代码下载:https://download.csdn.net/download/qq_34904125/89434765本代码是基于pythonpytorch环境安装的。下载本代码后,有个requirement.txt文本,里面介绍了如何安装环境,环境需要自行配置。或可直接参考下面博文进行环境安装。深度学习环境安装教程-anaconda-python-pyto......
  • 基于python-CNN卷积神经网络的鱼类识别-含数据集+pyqt界面
    代码下载地址:https://download.csdn.net/download/qq_34904125/89434763本代码是基于pythonpytorch环境安装的。下载本代码后,有个requirement.txt文本,里面介绍了如何安装环境,环境需要自行配置。或可直接参考下面博文进行环境安装。深度学习环境安装教程-anaconda-python-......
  • 人工智能系列:一文让你读懂什么是模式识别
    目录1.什么是模式识别1.1人工智能和模式识别1.2信息感知1.3计算机模式识别1.4模式识别应用1.5模式识别发展简史1.6相关问题和领域2.模式识别形式化2.1模式和模式识别2.2模式表示2.3特征空间2.4特征空间中的分类2.5一个例子3.模式识别系统流程4.模式分类器设计4......
  • 微信小程序识别身份证 (一)
    方法介绍:通过调用接口的方式进行实现原生微信小程序识别身份证官方文档:身份证识别,获取接口调用凭据实现步骤如下:1.首先要在微信的app.json下面配置允许访问相机"permission":{"scope.userLocation":{"desc":"你的位置信息将用于小程序位......
  • Transformer 模型的 PyTorch 实现
    Google2017年的论文Attentionisallyouneed阐释了什么叫做大道至简!该论文提出了Transformer模型,完全基于Attentionmechanism,抛弃了传统的RNN和CNN。我们根据论文的结构图,一步一步使用PyTorch实现这个Transformer模型。Transformer架构首先看一下transformer的结......