导读
继ChatGPT发布以来,各种大模型相继问世。近日Sora也突然走入大众的视野。那么做模型是否只有OpenAI这种巨头公司才能做呢,答案是否定的。在小公司做大模型,是可以的。本文作者结合切身经历,回答了如何在小公司做大模型。
在小公司做大模型,这个事情是可以的。
笔者在小公司,做了一年多的大模型。先列一下成绩单:
-
开源了目前业界可能是分类较完整(50类)、数量较大(1100+万)的SFT数据集:匠数科技大模型sft数据集[1]
-
通过SFT、DPO、RLHF等技术训练了领域写作模型。实测下来,在该领域写作上,强于国内大多数的闭源模型。
如何在小公司做大模型,笔者总结,有如下几点:
1、至少要有基础的硬件条件。
如果双卡3090都没有,那是比较难的。实在没有,可以说服老板,租机器训练。
2、要有选择跟进模型训练、部署的最新进展,选主流、走大道。
技术迭代太快,人力有限的情况下,不可能什么都跟进的。比如部署,市面上的部署方案很多了,但是主流的就是vllm,所以,集中精力将vllm搞懂用好,就够了,其他的可以了解,但不用重点关注。
再比如各种训练技术,经过验证好用的也就是那么几个。看起来过于旁门左道的论文,可以先放放,让子弹飞一会儿再说。提一点,DPO确实是小公司对齐训练的福音。
3、要坚持开放交流,多加群。
围绕llm,有很多社群,也有很多活动,可以选择性参加,但是切记切记,不要过分沉溺其中,以为这样就能紧跟时代前沿,掌握最新趋势了。假装学到很多,是很有害滴。记得前段时间不是有个什么架构,号称取代transformer吗?铺天盖地的宣传,笔者当时也听了作者的线上分享。现在呢?自己连个像样的模型都没搞出来。纯纯浪费太多精力。相信时间会证明一切。
4、要针对业务场景解决问题,不要陷入llm崇拜。
这种现象典型的就是不是llm的工作就提不起神,不想做。实话实说,这是病,得治。笔者根据业务问题需求,开源的cutword[2],就是为了替代jieba的新一代分词工具,同时,ner类型和效果都是目前开源中一流的,也收获了大家的认可。
解决问题才是关键。不能有了llm这个锤子,看什么都是钉子。具体问题具体分析的能力很重要。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。