前言
最近需要用到鱼眼图像做语义分割、目标检测等任务,最开始先使用woodscape数据集进行训练、测试,故此记录学习woodscape数据集。
学习woodscape数据集
1. 随机划分数据集
shell脚本
#!/bin/sh # 20240617: split woodscape dataset of 10 classes randomly based on cityscape dataset format. # * parent # * . # * ├── random_data # * │ ├── gtFine # * │ │ ├── train # * │ │ │ └── major # * │ │ └── val # * │ │ └── minor # * │ ├── leftImg8bit # * │ │ ├── train # * │ │ │ └── major # * │ │ └── val # * │ │ └── minor # * │ └── rename_files.sh # * ├── genpath.py script_path="$(pwd)" # randomdatapath="$script_path/randomdata" # mkdir $randomdatapath # cd $randomdatapath cd $script_path mkdir -p randomdata/gtFine/train/major mkdir -p randomdata/gtFine/val/minor mkdir -p randomdata/leftImg8bit/train/major mkdir -p randomdata/leftImg8bit/val/minor ls ../origdata/rgb_images/* > image.txt python genpath.py
python脚本
''' ******************************************************************************** * @file genpath.py * @brief generate train/valid dataset from woodscape dataset. ******************************************************************************** * @author xxx.zzz@yyy.com * @date 2024.06.17 * * @customer{ TBD} * @project{ APA} * @processor{ J3/TDA4} * @copyright (C) Copyright ABC Technologies Co., Ltd * * Contents and presentations are protected world-wide. * Any kind of using, copying etc. is prohibited without proor permission. * All rights - incl. industrial property rights - are reserved. * * @starthistory * @revision{ 1.0.0, AMY, Initial version.} * @endhistory ******************************************************************************** * parent * . * ├── random_data * │ ├── gtFine * │ │ ├── train * │ │ │ └── major * │ │ └── val * │ │ └── minor * │ ├── leftImg8bit * │ │ ├── train * │ │ │ └── major * │ │ └── val * │ │ └── minor * │ └── rename_files.sh * ├── genpath.py ******************************************************************************** ''' import os import random import shutil def genpath(path): rgbpath = os.path.join(path, '../origdata/rgb_images') gtpath = os.path.join(path, '../origdata/semantic_annotations/semantic_annotations/gtLabels') f_image = open(os.path.join(path, 'image.txt'), 'rt').readlines() print(len(f_image)) datapath = 'randomdata' image_train = os.path.join(path, datapath, 'leftImg8bit/train/major') image_valid = os.path.join(path, datapath, 'leftImg8bit/val/minor') label_train = os.path.join(path, datapath, 'gtFine/train/major') label_valid = os.path.join(path, datapath, 'gtFine/val/minor') n = len(f_image) i = 0 val_percent = 0.2 random.shuffle(f_image) nn = n*val_percent print(nn) for line in f_image: image_path = line.strip('\n') image_name = image_path.split('/')[-1] # old_imgpath = os.path.join(rgbpath, image_name) old_gtpath = os.path.join(gtpath, image_name) # new_imgname = image_name.replace('.png', '_leftImg8bit.png') new_gtname = image_name.replace('.png', '_gtFine_labelIds.png') if i<nn: # copy image new_imgpath = os.path.join(image_valid, new_imgname) shutil.copyfile(old_imgpath, new_imgpath) # copy label new_gtpath = os.path.join(label_valid, new_gtname) shutil.copyfile(old_gtpath, new_gtpath) else: # copy image new_imgpath = os.path.join(image_train, new_imgname) shutil.copyfile(old_imgpath, new_imgpath) # copy label new_gtpath = os.path.join(label_train, new_gtname) shutil.copyfile(old_gtpath, new_gtpath) i = i + 1 f_image.close() if __name__ == "__main__": path = os.path.dirname(os.path.realpath(__file__)) genpath(path)View Code
2.
参考
1. 自动驾驶鱼眼数据集WoodScape介绍(附下载); 2. GitHub - valeoai/WoodScape: The repository containing tools and information about the WoodScape data; 完 标签:join,val,image,理解,woodscape,train,path,os,CV From: https://www.cnblogs.com/happyamyhope/p/18252907