``
import nibabel
import numpy as np
import pydicom
import os
from tqdm import tqdm
def convertNsave(arr, file_dir, index=0, slice_thickness=1.0, pixel_spacing=(1.0, 1.0)):
"""
`arr`: parameter will take a numpy array that represents only one slice.
`file_dir`: parameter will take the path to save the slices
`index`: parameter will represent the index of the slice, so this parameter will be used to put
the name of each slice while using a for loop to convert all the slices
`slice_thickness`: parameter for slice thickness in mm
`pixel_spacing`: parameter for pixel spacing in mm
"""
# Read a template DICOM file
dicom_file = pydicom.dcmread('D:\\edge download\\lunao\\CHI_SHENG_TAI\\T2\\DICOM\\IM_0001')
arr = arr.astype('uint16')
# Rotate the image 90 degrees clockwise
arr = np.rot90(arr, -1)
# Update the necessary DICOM metadata
dicom_file.Rows = arr.shape[0]
dicom_file.Columns = arr.shape[1]
dicom_file.PhotometricInterpretation = "MONOCHROME2"
dicom_file.SamplesPerPixel = 1
dicom_file.BitsStored = 16
dicom_file.BitsAllocated = 16
dicom_file.HighBit = 15
dicom_file.PixelRepresentation = 1
dicom_file.InstanceNumber = index + 1
dicom_file.SliceLocation = index * slice_thickness
dicom_file.SliceThickness = slice_thickness
dicom_file.SpacingBetweenSlices = slice_thickness
dicom_file.PixelSpacing = [str(pixel_spacing[0]), str(pixel_spacing[1])]
# Update the Image Position (Patient) and Image Orientation (Patient) if necessary
dicom_file.ImagePositionPatient = [0, 0, index * slice_thickness]
dicom_file.ImageOrientationPatient = [1, 0, 0, 0, 1, 0]
# Convert numpy array to bytes
dicom_file.PixelData = arr.tobytes()
# Save the new DICOM file
dicom_file.save_as(os.path.join(file_dir, f'slice{index:04d}.dcm'))
def nifti2dicom_1file(nifti_dir, out_dir):
"""
This function is to convert only one nifti file into dicom series
`nifti_dir`: the path to the one nifti file
`out_dir`: the path to output
"""
# Load the NIfTI file
nifti_file = nibabel.load(nifti_dir)
nifti_array = nifti_file.get_fdata()
number_slices = nifti_array.shape[2]
# Get pixel spacing and slice thickness from the NIfTI header if available
pixel_spacing = nifti_file.header.get_zooms()[:2]
slice_thickness = nifti_file.header.get_zooms()[2]
# Convert each slice to DICOM
for slice_ in tqdm(range(number_slices)):
convertNsave(nifti_array[:, :, slice_], out_dir, slice_, slice_thickness, pixel_spacing)
def nifti2dicom_mfiles(nifti_dir, out_dir=''):
"""
This function is to convert multiple nifti files into dicom files
`nifti_dir`: You enter the global path to all of the nifti files here.
`out_dir`: Put the path to where you want to save all the dicoms here.
PS: Each nifti file's folders will be created automatically, so you do not need to create an empty folder for each patient.
"""
files = os.listdir(nifti_dir)
for file in files:
in_path = os.path.join(nifti_dir, file)
out_path = os.path.join(out_dir, file)
os.makedirs(out_path, exist_ok=True)
nifti2dicom_1file(in_path, out_path)
if __name__ == '__main__':
# Convert a single NIfTI file to a DICOM series
input_image = "C:\\Users\\wangyanming3\\Desktop\\nnUNet-2.4.1\\input\\BraTS_0001.nii.gz"
output_path = "C:\\Users\\wangyanming3\\Desktop\\nnUNet-2.4.1\\output\\0001"
os.makedirs(output_path, exist_ok=True)
nifti2dicom_1file(input_image, output_path)
标签:slice,nifti,dicom,nii,dir,file,path,模板
From: https://www.cnblogs.com/cupwym/p/18251779