闲话
待补。也可能不补(
最近听了好多 v 曲啊(感叹
今日推歌:
乌云 雨 透明的我 by 沉林川 et al. feat. 星尘:
去时枝 by 沉林川 feat. 洛天依
I . I . I G R O K by JUSF周存 feat. 洛天依
一个奇怪的渐近估计
之前在思考[数据删除]的做法时,想出了一个完全错误的方法。在计算复杂度的时候,突发奇想,想要算一下暴力的实际复杂度。具体地,我们希望估计下面式子的渐近表现:
\[\sum_{T\text{ is PN}}\sum_{p\nmid T} [pT \le n] \]一方面,
\[\sum_{T\text{ is PN}}\sum_{p\nmid T} [pT \le n] \le \sum_{T\text{ is PN}}\sum_{p} [pT \le n] \]而直接按 \(\sqrt n \log^k n\) 划分,估计一下能得到
\[\begin{aligned} & \Theta \left( \int_1^{\sqrt n \log^k n} \sqrt{\frac{n}{p}} \ \mathrm d \pi(p) + \int_1^{\sqrt n / \log^k n} \sqrt T \ \mathrm d T \right) \\ = \ & \Theta \left( \sqrt n \int_1^{\sqrt n \log^k n} \sqrt{\frac{1}{p}} \left(\frac{\log p - 1}{\log^2 p}\right) \ \mathrm d p + \left(\frac{\sqrt n}{\log^k n}\right)^{3/2} \right) \\ = \ & \Theta \left( \sqrt n \left(\frac{1}{2}\text{Ei}\left(\frac{\log p}{2}\right) + \frac{\sqrt p}{\log p}\right) \Big\rvert_{1}^{\sqrt n \log^k n} + \left(\frac{\sqrt n}{\log^k n}\right)^{3/2} \right) \\ = \ & \Theta \left( \sqrt n \frac{\sqrt{\sqrt n \log^k n}}{\log n} + \left(\frac{\sqrt n}{\log^k n}\right)^{3/2} \right) \\ = \ & \Theta \left( \frac{n^{3/4}}{\log^{1-k/2} n} + \frac{n^{3/4}}{\log^{3k/2} n} \right) \end{aligned}\]已经了解了 \(\text{Ei}\left(\dfrac{\log p}{2}\right) \sim \dfrac{\sqrt p}{\log p}\)。
最后取 \(k = \dfrac{1}{2} - \dfrac{\log 3}{2\log \log n}\) 或 \(\dfrac{1}{2}\) 得到最小值 \(\Theta \left(\dfrac{n^{3/4}}{\log^{3/4}(n)}\right)\)。由于 \(\le\),我们只得到了目的和式的上界。
另一方面,
\[\sum_{T\text{ is PN}}\sum_{p} [pT \le n] - \sum_{T\text{ is PN}}\sum_{p\nmid T} [pT \le n] = \sum_{T\text{ is PN}}\sum_{p\mid T} [pT \le n] \le \sum_{T\text{ is PN}}\sum_{p \le \sqrt n} [pT \le n] \]而
\[\begin{aligned} &\sum_{T\text{ is PN}}\sum_{p \le \sqrt n} [pT \le n] \\ = \ & \sum_{p \le \sqrt n}\sum_{T\text{ is PN}} [T \le n / p] \\ = \ & \Theta \left( \int_1^{\sqrt n} \sqrt\frac{n}{p} \ \mathrm d\pi(p) \right) \\ = \ & \Theta \left( \sqrt n \frac{n^{1/4}}{\log n} \right) \\ = \ & \Theta \left( \frac{n^{3/4}}{\log n} \right) \end{aligned}\]因此
\[\begin{aligned} &\sum_{T\text{ is PN}}\sum_{p\nmid T} [pT \le n] \\ \ge \ & \sum_{T\text{ is PN}}\sum_{p} [pT \le n] - \sum_{T\text{ is PN}}\sum_{p \le \sqrt n} [pT \le n] \\ = \ & \Theta \left( \frac{n^{3/4}}{\log^{3/4} n} \right) - \Theta \left( \frac{n^{3/4}}{\log n} \right) \\ = \ & \Theta \left( \frac{n^{3/4}}{\log^{3/4} n} \right) \end{aligned}\]这就指出了目的和式的下界同样为该式。
因此,我们知道了
\[\sum_{T\text{ is PN}}\sum_{p\nmid T} [pT \le n] = \Theta \left( \frac{n^{3/4}}{\log^{3/4} n} \right) . \] 标签:le,15,log,闲话,24.6,sqrt,right,sum,left From: https://www.cnblogs.com/joke3579/p/-/chitchat240615