首页 > 其他分享 >浅谈内联钩取原理与实现

浅谈内联钩取原理与实现

时间:2024-06-13 09:58:52浏览次数:23  
标签:函数 钩取 地址 指令 跳转 内联 浅谈

前言

导入地址表钩取的方法容易实现但是存在缺陷,若需要钩取的函数不存在导入地址表中,那么我们就无法进行钩取,出现以下几种情况时,导入函数是不会存储在导入地址表中的。

  • 延迟加载:当导入函数还没调用时,导入函数还未写入到导入地址表中。

  • 动态链接:使用LoadLibraryGetProcAddress函数时,程序是显示获取函数地址的,因此不会写入到导入地址表中。

  • 手动解析导入函数:即程序自身实现一套导入方法,那么此时也不会将导入函数写入到导入地址表中。

有一种钩取方法解决上述问题即内联钩取(inline hook)。

内联钩取(inline hook)

内联钩取实际是找到需要钩取的函数地址,这里与导入地址表钩取不同的是我们不再局限于导入地址表,而是程序中所有的函数地址都能够作为钩取的对象。

这里以CreateProcessW函数为例,在CreateProcessW函数中,第一条指令是mov edi,edi

image-20240506224301537

那么根据钩取的思路,我们将mov edi,edi这条指令修改为jmp xxxxxx为我们自定义函数的地址),那么在执行CreateaProcessW函数时即可跳转到我们的自定义函数中。

我们获取mov edi,edi指令的地址,并且将该指令篡改为jmp指令,并且把mov edi,edi指令的数据进行存储,那么在执行到CreateProcessW函数时就会执行jmp指令跳转到自定义函数中,在钩取操作时需要将指令写回,还原CreateProcessW函数的执行逻辑,就可以在钩取的同时无碍的执行程序。

image-20240506225530172

那么总结一下内联钩取函数的流程

  • 找到需要钩取的函数的指令地址,这个指令并不仅限于函数起始的指令。

  • 将该指令篡改成跳转指令,跳转的目的就是自定义的函数。

  • 在自定义函数内需要还原被钩取函数的指令。

因此内联钩取的实际就是修改程序执行逻辑,劫持程序的执行流程。由于32位程序与64位程序的汇编语言与寻址方式有些许差异,因此不同机器位数的程序的内联钩取方式不同。

机器码的获取

由于在篡改内存时需要将jmp xxx的机器码填写到内存中,因此做内联钩取时需要获取指令对应的机器码。在C语言中支持内联汇编,因此可以使用内联汇编然后查看对应的机器码即可。

但是直接使用visual studio编译64位程序的内联汇编代码会出错,这是因为visual studio自带的编译工具不支持x64的内联汇编。

image-20240507131700203

因此需要先安装clang编译器

image-20240507131840623

在项目的编译工具选择clang即可

image-20240507131913336

在反汇编窗口中就有机器码了。

image-20240507132015250

【----帮助网安学习,以下所有学习资料免费领!加vx:dctintin,备注 “博客园” 获取!】

 ① 网安学习成长路径思维导图
 ② 60+网安经典常用工具包
 ③ 100+SRC漏洞分析报告
 ④ 150+网安攻防实战技术电子书
 ⑤ 最权威CISSP 认证考试指南+题库
 ⑥ 超1800页CTF实战技巧手册
 ⑦ 最新网安大厂面试题合集(含答案)
 ⑧ APP客户端安全检测指南(安卓+IOS)

32位的内联钩取

首先第一步是确定在32位程序下是如何进行跳转的,在32位情况使用跳转指令是根据偏移获取目的地址,偏移的计算公式如下

跳转偏移 = 跳转目的地址 - 当前指令地址 - 指令长度

因此jmp xxx中,xxx是偏移值而不是目的函数的绝对地址。

紧接着需要确定在32位下跳转指令的机器码是多少,用下面例子看看

void MyCreateProcess()
{
​
}
​
int main()
{
​
    __asm {
        jmp MyCreateProcess;
    };
​
​
}

可以看到对应的机器码为E9 EB FF FF FF

image-20240507134049072

可以看到目标函数的地址为0xA71000,使用上述公式计算一下偏移为0xA71000 - 0x0A71010 - 5 = 0xffffffeb,因此E9jmp的机器码

因此需要将待钩取函数的第一条指令修改为E9 XX XX XX XX XX,长度为5个字节

然后选择一个目标函数,这里还是使用CreateProcessW函数作为例子,需要先获取CreateProcessW函数的地址

    ...
    hMoudle = GetModuleHandleA(szDllName); //获取Kernel32.dll模块的地址
    if (hMoudle == NULL)
    {
        GetLastError();
    }
    
    pfnOld = GetProcAddress(hMoudle, funName);//获取CreateProcessW函数地址
    if (pfnOld == NULL)
    {
        GetLastError();
    }
    ...

然后需要保存原始指令,然后修改区域为可写权限,紧接着计算一下偏移把完整的指令写进到待钩取函数即可。

    ...
    //修改权限
    VirtualProtect(pfnOld, 5, PAGE_EXECUTE_READWRITE, &dwOldProtect);
    //存储原始的5个字节
    memcpy(pOrgBytes, pfnOld, 5);
    //计算需要跳转到的地址
    //跳转偏移 = 跳转目的地址 - 当前指令地址 - 指令长度
    dwAddress = (ULONGLONG)pfnNew - (ULONGLONG)pfnOld - 5;
    //将目标函数的地址写入到指令中
    memcpy(&pBuf[1], &dwAddress, 4);
    //篡改为跳转指令
    memcpy(pfnOld, pBuf, 5);
    //还原权限
    VirtualProtect(pfnOld, 5, dwOldProtect, &dwOldProtect);
    ...

64位的内联钩取

64位下的规则会与32位有差异,但是总体思路是一致的。在32位下我们采用了偏移的方式找到目标函数,在64位下可以换种方式,采用mov rax, xxx; jmp rax,将函数的绝对地址写入寄存器,然后跳转到指定寄存器的方式。

如下例子,我们首先获取自定义函数的绝对地址,紧接着将它存放于寄存器中,紧接着跳转即可。

int main()
{
    __asm {
        mov rax, 0x1122334455667788;
        jmp rax;
    };
​
}

可以看到mov rax, xxx; jmp rax指令的机器码为48 B8 xx xx xx xx xx xx xx xx FF E0,其中由于64位地址都是8字节的,因此需要xx需要填充8字节

image-20240507153239222

因此总体代码与32位区别不大,这里需要注意的是篡改的指令长度需要根据实际进行更改。

    /*
    * 48 B8 88 77 66 55 44 33 22 11 mov rax, 0x1122334455667788
    * FF E0                         jmp rax
    * 需要12个字节进行跳转
    */
​
    //修改区域权限
    VirtualProtect((LPVOID)pfnOrg, 12, PAGE_EXECUTE_READWRITE, &dwOldProtect);
    //保存原有的12字节数据
    memcpy(pOrgBytes, pfnOrg, 12);
    //将HOOK函数的地址填进缓冲区
    //将目标地址拷贝到指令中
    memcpy(&pBuf[2], &pfnNew, 8);
    //篡改待钩取函数
    memcpy(pfnOrg, pBuf, 12);
    //恢复权限
    VirtualProtect((LPVOID)pfnOrg, 12, dwOldProtect, &dwOldProtect);

因此任意可以修改函数执行流程的汇编指令实际都可以例如push xxx; ret

完整代码可以参考:

https://github.com/h0pe-ay/HookTechnology/tree/main/Hook-InlineHook

总结

优势

  • 内联钩取相较于导入表钩取的选择性更广,可以选择任意的函数及函数内的任意指令地址。

劣势

  • 每次都需要脱钩后再进行挂钩,影响效率

  • 多线程写入时可能会出错

更多网安技能的在线实操练习,请点击这里>>

  

标签:函数,钩取,地址,指令,跳转,内联,浅谈
From: https://www.cnblogs.com/hetianlab/p/18245248

相关文章

  • 零基础非科班也能掌握的C语言知识21 编译链接(介于作者实力有限并且没有可以演示的过程
    编译链接1.翻译环境和运行环境2.翻译环境2.1编译2.1.1预处理(预编译)2.1.2编译2.1.3汇编2.2链接3.运行环境1.翻译环境和运行环境在ANSIC的任何⼀种实现中,存在两个不同的环境。编译环境运行环境2.翻译环境翻译环境由编译和链接两个大的过程组成的,而编译又可......
  • 浅谈 Java 引用:弱引用 WeakReference
    前言最近在测试micrometer的Gauge度量时,发现被观察的目标对象,在一开始时能被采集到指标,过了一段时间后(jvm发生了gc),被观察对象的指标采集不到了,经过跟踪发现,Gauge在构建被观察对象时,使用了Java的弱引用。测试场景回溯目标为了采集httpclient的连接管理器(连接池)的指标......
  • 嵌入式浅谈之CANopen
    在工业控制和汽车领域,CAN是一种流行的现场总线,到处都可以看到它的身影。而CAN协议本身只定义了物理层和链路层,对应用层没有规定。各家都可以自定义自己的应用层协议内容,但是这样一来各家协议就不能兼容,大家各自搞一套,似乎是有点重复造轮子的意思,而且协议稳定需要较长的验证,这样......
  • 嵌入式浅谈之“梯形”加减速MCU算法实现
    书接上回,上章我们讲到原理,本章我们来聊聊实现。在笔者的实际项目经历中,梯形加减速运用的比较广泛,主要以其优秀的加减速能力、对算法实现资源的需求较小、实现难度适中而被广泛应用。下面就简单介绍一下基于MCU的算法实现过程,以STM32为例。采用“梯形”加减速算法,在运动过......
  • 浅谈2024年全国中学生生物学联赛
    坐标gd谈谈联赛流水账day-n吃了蛋糕感谢家乐哥、圆领姐、刘sir和黄豆前来捧场,不过忘记叫盛哥来了教练把已经退役的人拉回来考试?然后在教学楼大发雷霆这几天身体一直不太好,先是发烧,退烧了之后就开始感冒+腹泻,十分难受。保济丸狂闷随便看了点比解day0感冒好得差不多,疯狂......
  • 浅谈Redis的三种集群策略及应用场景
    本文分享自天翼云开发者社区《浅谈Redis的三种集群策略及应用场景》,作者:段林Redis提供了三种集群策略:1.主从模式:这种模式⽐较简单,主库可以读写,并且会和从库进⾏数据同步,这种模式下,客户端直接连主库或某个从库,但是但主库或从库宕机后,客户端需要⼿动修改IP,另外,这种模式也⽐较难进......
  • 浅谈配置元件之随机变量
    浅谈配置元件之随机变量1.概述为了增强测试的真实性和多样性,JMeter提供了多种配置元件来生成动态数据,其中“随机变量”(RandomVariable)就是一种常用的配置元件,用于生成随机数值、字符串等,以模拟不同用户请求中的变化参数。2.目的随机变量配置元件的主要目的是在每个......
  • 浅谈正向代理和反向代理(案例介绍)
    公司一般主要以反向代理为主(最典型的Nginx负载均衡)一、正向代理客户端Client不直接访问服务器Server,通过代理服务器Proxy访问正向代理是客户主动使用的代理正向代理:最典型的案例就是通过爬虫爬取网络数据,如果请求次数过多该网站会屏蔽你的IP(封禁一段时间在访问、无......
  • 浅谈SpringBoot配置文件
    文章目录一、配置文件作用二、配置文件分类三、SpringBoot内置的配置文件格式3.1、.properties3.1.1、.properties配置语法3.1.2、.properties读取方式3.2、.yml/.yaml3.2.1、.yml配置语法3.2.2、.yml读取形式四、两种配置文件优缺点4.1、.properties4.2、.yml4.2.1、......
  • C++高级编程之——函数重载、内联、缺省参数、隐式转换
    C++函数的高级特性对比于C语言的函数,C++增加了重载(overloaded)、内联(inline)、const和virtual四种新机制。其中重载和内联机制既可用于全局函数也可用于类的成员函数,const与virtual机制仅用于类的成员函数。重载和内联肯定有其好处才会被C++语言采纳,但是不可以当成免......