首页 > 其他分享 >【数据结构】【版本1.0】【线性时代】——顺序表

【数据结构】【版本1.0】【线性时代】——顺序表

时间:2024-06-13 09:00:32浏览次数:31  
标签:1.0 psl SLDataType pos assert SL 线性 数据结构 size



快乐的流畅:个人主页


个人专栏:《算法神殿》《数据结构世界》《进击的C++》

远方有一堆篝火,在为久候之人燃烧!

文章目录

引言

数据结构世界——顺序表(Sequential List)

一、顺序表的概念

1.1 最基础的数据结构:数组

【思考】有了数组,为什么还要学习其他的数据结构?

假定数组有10个空间,已经使用了5个,向数组中插入数据步骤:求数组的长度,求数组的有效数据个数,向下标为数据有效个数的位置插入数据(注意:这里是否要判断数组是否满了,满了还能继续插入吗)…


假设数据量非常庞大,频繁的获取数组有效数据个数会影响程序执行效率。

结论:最基础的数据结构能够提供的操作已经不能完全满足复杂算法实现

1.2 数组与顺序表的区别

顺序表的底层结构是数组,对数组的封装,实现了常用的增删改查等接口。

二、静态顺序表

//静态顺序表
#define N 10
typedef int SLDataType;

typedef struct SeqList
{
	SLDataType a[N];
	int size;
}SL;

​​​​

静态顺序表缺陷空间给少了不够用,给多了造成空间浪费

三、动态顺序表的模拟实现

3.1 定义

//动态顺序表
typedef int SLDataType;

typedef struct SeqList
{
	SLDataType* a;
	int size;//存储的有效数据的个数
	int capacity;//容量
}SL;

顺序表的各种功能,都是通过函数来实现的。

3.2 初始化

void SLInit(SL* psl)
{
	assert(psl);
	psl->a = (SLDataType*)malloc(sizeof(SLDataType) * 4);
	if (psl->a == NULL)
	{
		perror("malloc fail");
		return;
	}
	psl->size = 0;
	psl->capacity = 4;
}
  • 函数参数传结构体指针,这样才能在函数内部对顺序表进行各种解引用操作
  • 对于动态顺序表,初始化则用malloc函数动态开辟内存空间 ;存储个数为0,容量初始置为4

3.3 销毁

void SLDestroy(SL* psl)
{
	assert(psl);
	free(psl->a);
	psl->a = NULL;
	psl->size = 0;
	psl->capacity = 0;
}
  • 对于用free函数将动态开辟的空间进行释放,并将指针置为NULL ;再将存储个数和容量置为0

3.4 扩容

数组满了怎么办?那么,我们就需要扩容,定义一个函数专门来检测容量,如果容量满了,则进行扩容。

static void CheckCapacity(SL* psl)
{
	assert(psl);
	if (psl->size == psl->capacity)
	{
		SLDataType* tmp = (SLDataType*)realloc(psl->a, sizeof(SLDataType) * psl->capacity * 2);
		if (tmp == NULL)
		{
			perror("realloc fail");
			return;
		}
		psl->a = tmp;
		psl->capacity *= 2;
	}
}
  • 我们使用realloc函数动态开辟空间进行扩容,而扩容的大小则为原来容量的2倍 (这样比较合理,扩容多了浪费空间,扩容少了空间又不够)

3.5 尾插

void SLPushBack(SL* psl, SLDataType x)
{
	assert(psl);
	CheckCapacity(psl);
	psl->a[psl->size++] = x;
}
  • 对于psl指针,如果有人误传了NULL,则会导致程序崩溃,所以最好在每个函数前断言assert,保证psl指针的有效性
  • 先检测是否需要扩容
  • 再根据当前已有的元素个数,对数组进行下标访问并赋值,size++

3.6 头插

void SLPushFront(SL* psl, SLDataType x)
{
	assert(psl);
	CheckCapacity(psl);
	int end = psl->size - 1;
	while (end >= 0)
	{
		psl->a[end + 1] = psl->a[end];
		end--;
	}
	psl->a[0] = x;
	psl->size++;
}
  • 先检测是否需要扩容
  • 再用循环将数组中每个元素向后挪动一格,最后在头部插入数据,size++

3.7 尾删

void SLPopBack(SL* psl)
{
	assert(psl);
	assert(psl->size > 0);
	psl->size--;
}
  • 使用断言assert,保证size大于零,不会造成越界访问
  • 直接让size- -,使得不再能够访问尾部数据

3.8 头删

void SLPopFront(SL* psl)
{
	assert(psl);
	assert(psl->size > 0);
	int start = 0;
	while (start < psl->size - 1)
	{
		psl->a[start] = psl->a[start + 1];
		start++;
	}
	psl->size--;
}
  • 用循环将数组中每个元素向前挪动一格,覆盖头部数据,实现头部删除,size- -

3.9 指定插入

void SLInsert(SL* psl, int pos, SLDataType x)
{
	assert(psl);
	assert(pos >= 0 && pos <= psl->size);
	CheckCapacity(psl);
	int end = psl->size - 1;
	while (end >= pos)
	{
		psl->a[end + 1] = psl->a[end];
		end--;
	}
	psl->a[pos] = x;
	psl->size++;
}
  • 断言assert保证pos不会越界
  • 输入指定位置的下标,用循环将pos往后的所有数据向后挪动一格 ,再于指定位置插入数据,size++

我们可以运用这个应用更广的指定插入,来实现头插和尾插 ,以此增强函数的复用性

尾插

void SLPushBack(SL* psl, SLDataType x)
{
	assert(psl);
	SLInsert(psl, psl->size, x);
}

头插

void SLPushFront(SL* psl, SLDataType x)
{
	assert(psl);
	SLInsert(psl, 0, x);
}

3.10 指定删除

void SLErase(SL* psl, int pos)
{
	assert(psl);
	assert(pos >= 0 && pos < psl->size);
	int start = pos + 1;
	while (start < psl->size)
	{
		psl->a[start - 1] = psl->a[start];
		start++;
	}
	psl->size--;
}
  • 断言assert保证pos不会越界(此处与指定插入比少了一个等号,仔细思考一下为什么?)
  • 输入指定位置的下标,用循环将pos往后的所有数据向前挪动一格 ,以此覆盖pos位置的数据,达到指定删除的目的

我们可以运用这个应用更广的指定删除,来实现头删和尾删 ,以此增强函数的复用性

尾删

void SLPopBack(SL* psl)
{
	assert(psl);
	SLErase(psl, psl->size - 1);
}

头删

void SLPopFront(SL* psl)
{
	assert(psl);
	SLErase(psl, 0);
}

3.11 查找

int SLFind(SL* psl, SLDataType x)
{
	assert(psl);
	int i = 0;
	for (i = 0; i < psl->size; i++)
	{
		if (psl->a[i] == x)
		{
			return i;
		}
	}
	return -1;
}
  • for循环遍历数组,找到返回下标,找不到返回-1

3.12 修改

void SLModify(SL* psl, int pos, SLDataType x)
{
	assert(psl);
	assert(pos >= 0 && pos < psl->size);
	psl->a[pos] = x;
}
  • 直接通过下标访问数组进行修改

3.13 打印

void SLPrint(SL* psl)
{
	assert(psl);
	int i = 0;
	for (i = 0; i < psl->size; i++)
	{
		printf("%d ", psl->a[i]);
	}
}

真诚点赞,手有余香

标签:1.0,psl,SLDataType,pos,assert,SL,线性,数据结构,size
From: https://blog.csdn.net/2301_79188764/article/details/139439748

相关文章

  • 数据结构复习笔记5.6:哈夫曼编码树
    1.前导概念1.定义:设有n个权值{w1,w2,…,wn},构造一棵有n个叶子结点的二叉树,每个叶子的权值为wi,则wpl最小的二叉树叫哈夫曼树。例子:2.结点的路径长度:从根结点到该结点的路径上的连接数3.树的路径长度:就是树的每个叶⼦结点的路径⻓度之和4.结点的带权路径⻓度:结点的路径⻓......
  • 【Test 66 】 高阶数据结构 二叉搜索树 必会知识点!
    文章目录1.二叉搜索树的概念2.二叉搜索树K模型的代码实现2.1Find()查找的实现2.2Insert()插入的实现2.3InOrder()中序遍历的实现2.4Erase()删除的实现3.二叉搜索树的KV模型4.二叉搜索树的性能分析1.二叉搜索树的概念......
  • Ventoy 1.0.99 发布,创建可启动 U 盘的工具
    Ventoy是一个可为ISO/WIM/IMG/VHD(x)/EFI文件创建可启动USB驱动器的工具。虽然Ventoy是一个基于GPLv3许可的开源软件,但Ventoy项目需要支付服务器托管、域名、带宽、许多测试用的U盘等费用,因此为了使Ventoy更好地持续发展,官方提供了订阅服务。V......
  • 【力扣真题】3.哈希表|算法真题程序设计数据结构考研保研复试机试面试秋招春招蓝桥杯
    242.有效的字母异位词给定两个字符串s和t,编写一个函数来判断t是否是s的字母异位词。示例1:输入:s=“anagram”,t=“nagaram”输出:true示例2:输入:s=“rat”,t=“car”输出:false说明:你可以假设字符串只包含小写字母。力扣题目链接思......
  • 非齐次线性最小二乘
    非齐次线性最小二乘问题是线性代数中一种重要的优化问题,用于寻找一组最接近给定数据的线性模型参数。当模型预测值与实际观测值之间存在误差,且模型是线性的,但观测值并不完全满足模型时,就使用非齐次线性最小二乘法。其目标是最小化模型预测值与实际观测值之间的残差平方和。......
  • R:microtable包线性判别分析LEfSe
    rm(list=ls())setwd("C:\\Users\\Administrator\\Desktop\\New_microtable")#设置工作目录library(microeco)library(magrittr)library(dplyr)library(tibble)feature_table<-read.table('Bac_species.txt',header=TRUE,row.names=......
  • 6.12(1)线性规划应用案例的求解
    (1)线性规划应用案例的求解1、基本要求通过一个农业生产计划优化安排的实例求解,培养学生解决实际线性规划问题的初步能力;熟悉线性规划的建模过程;掌握Matlab优化工具箱中线性规划函数的调用。2、主要内容某村计划在100公顷的土地上种植a、b、c三种农作物。可以提供的劳力、粪肥和......
  • 设计模式--1.0.2
    工厂模式Version1.0.2工厂模式提供一种创建对象的方式,而无需指定要创建的具体类。通过使用工厂模式,可以将对象的创建逻辑封装在一个工厂类中,而不是在客户端代码中直接实例化对象,这样可以提高代码的可维护性和扩展性。意图定义一个创建对象的接口,让其子类决定实例化哪一个具......
  • wimlib API 提供了一系列用于处理 Windows 映像文件(.wim 文件)的函数和数据结构,使开发
    wimlibAPI提供了一系列用于处理Windows映像文件(.wim文件)的函数和数据结构,使开发人员能够在其应用程序中集成对WIM文件的创建、修改和提取功能。以下是一些常见的wimlibAPI:WIM文件的创建和初始化:wimlib_create_new_wim():创建一个新的WIM文件。wimlib_open_wim():......
  • Java数据结构与算法(回溯算法)
    前言回溯算法是一种通过构建问题的解树(或解图)来逐步构建候选解的通用算法。它尝试通过一系列选择来解决问题,选择可能包括移动、添加一个元素到当前解、决定一个解的某部分等。当发现某个选择无法导致一个有效解时,算法会回退(即回溯),撤销该选择,并尝试其他选择。回溯算法通常用于......