(1)线性规划应用案例的求解
1、基本要求
通过一个农业生产计划优化安排的实例求解,培养学生解决实际线性规划问题的初步能力;熟悉线性规划的建模过程;掌握Matlab优化工具箱中线性规划函数的调用。
2、主要内容
某村计划在100公顷的土地上种植a、b、c三种农作物。可以提供的劳力、粪肥和化肥等资源的数量,种植每公顷农作物所需这三种资源的数量,以及能够获得的利润如表所示。
种植投入产出表
|
用 工 |
粪肥(吨) |
化肥(千克) |
利润(元) |
a |
450 |
35 |
350 |
1500 |
b |
600 |
25 |
400 |
1200 |
c |
900 |
30 |
300 |
1800 |
可提供资源 |
63000 |
3300 |
33000 |
|
其中一个劳动力干一天为1个工。现在要求为该村制定一个农作物的种植计划,确定每种农作物的种植面积,使得总利润最大。
3、操作要点
(1)建立线性规划的数学模型;
(2)安装Matlab优化工具箱(Optimization Toolbox),并学习工具箱中求解线性规划的函数;
(3)利用Matlab优化工具箱解线性规划问题。
(4)运行该程序,在命令窗记录下最优解x和对应的最优值fval。
(5)按照模板撰写实验报告,要求规范整洁。
4、主要仪器设备
微机及Matlab软件
f=[1500 1200 1800]; f=-f; a=[450 600 900;35 25 30;350 400 300]; b=[63000 3300 33000]; acq=[1 1 1]; aeq=[1 1 1]; beq=[100]; lb=zeros(3,1); [zui,zong,exitflag,output,lamdba]=linprog(f,a,b,aeq,beq,lb)
最优种植方案为种植A作物60公顷,B作物0公顷,C作物40公顷,总利润16200元。
标签:求解,线性规划,6.12,公顷,种植,Matlab,工具箱 From: https://www.cnblogs.com/xuan-2004/p/18243525