(1)线性规划应用案例的求解
1、基本要求
通过一个农业生产计划优化安排的实例求解,培养学生解决实际线性规划问题的初步能力;熟悉线性规划的建模过程;掌握Matlab优化工具箱中线性规划函数的调用。
2、主要内容
某村计划在100公顷的土地上种植a、b、c三种农作物。可以提供的劳力、粪肥和化肥等资源的数量,种植每公顷农作物所需这三种资源的数量,以及能够获得的利润如表所示。
种植投入产出表
|
用 工 |
粪肥(吨) |
化肥(千克) |
利润(元) |
a |
450 |
35 |
350 |
1500 |
b |
600 |
25 |
400 |
1200 |
c |
900 |
30 |
300 |
1800 |
可提供资源 |
63000 |
3300 |
33000 |
|
其中一个劳动力干一天为1个工。现在要求为该村制定一个农作物的种植计划,确定每种农作物的种植面积,使得总利润最大。
3、操作要点
(1)建立线性规划的数学模型;
(2)安装Matlab优化工具箱(Optimization Toolbox),并学习工具箱中求解线性规划的函数;
(3)利用Matlab优化工具箱解线性规划问题。
(4)运行该程序,在命令窗记录下最优解x和对应的最优值fval。
(5)按照模板撰写实验报告,要求规范整洁。
4、主要仪器设备
微机及Matlab软件
(2)二次规划应用案例的求解
1、基本要求
通过一个投资组合优化问题的实例求解,培养学生解决实际二次规划问题的初步能力;熟悉线性规划的建模过程;掌握Matlab优化工具箱中线性规划函数的调用。
2、上机主要内容
求解从一点(0,0,0)到超平面的最短距离,
其中,,。
通过建模构造二次规划问题,求解以上问题的最优解和最优值。
3、操作要点
(1)建立二次规划的数学模型;
(2)安装Matlab优化工具箱(Optimization Toolbox),并学习工具箱中求解二次规划的函数;
(3)利用Matlab优化工具箱解二次规划问题。
(4)运行该程序,在命令窗记录下最优解x和对应的最优值fval。
(5)按照模板撰写实验报告,要求规范整洁。
4、主要仪器设备
微机及Matlab软件
标签:最优,求解,线性规划,Matlab,工具箱,优化,最优化,MATLAB From: https://www.cnblogs.com/youxiandechilun/p/18243722