首页 > 其他分享 >数据仓库之维度建模

数据仓库之维度建模

时间:2024-06-10 20:33:43浏览次数:25  
标签:数据仓库 建模 查询 维度 ID 事实

维度建模是数据仓库设计中的一种方法,旨在优化数据查询和分析过程。它通过将数据划分为事实表和维度表,使复杂的数据查询变得更加高效和直观。以下是关于数据仓库维度建模的详细介绍:

1. 维度建模的概念

维度建模(Dimensional Modeling)是一种数据建模方法,用于设计数据仓库中的数据结构,使其能够有效支持OLAP(在线分析处理)和BI(商业智能)应用。维度建模的核心是事实表和维度表的设计,它们共同组成了星型模式或雪花模式。

2. 维度建模的基本要素

事实表(Fact Table)
  • 定义:存储业务过程中的度量和度量的外键,通常包含大量的记录。
  • 特点:行数多、包含数值型数据、每行表示一个业务事件。
  • 示例:销售事实表,包含销售金额、销售数量、销售日期、产品ID、客户ID等。
维度表(Dimension Table)
  • 定义:存储业务实体的属性,为事实表中的度量提供上下文信息。
  • 特点:行数相对较少、包含描述性数据、每行表示一个实体或概念。
  • 示例:产品维度表,包含产品ID、产品名称、产品类别、产品品牌等。

3. 维度建模的模式

星型模式(Star Schema)
  • 结构:事实表在中心,多个维度表围绕在周围,所有维度表直接连接到事实表。
  • 优点:简单直观、查询性能高、易于理解和实现。
  • 示例
    • 事实表:销售事实表(销售ID、日期ID、产品ID、客户ID、销售金额、销售数量)
    • 维度表:日期维度表(日期ID、日期、周、月、季度、年)、产品维度表(产品ID、产品名称、类别)、客户维度表(客户ID、客户姓名、地区)
雪花模式(Snowflake Schema)
  • 结构:在星型模式基础上,维度表进一步规范化为多个相关的表。
  • 优点:减少数据冗余、存储空间节省。
  • 缺点:查询复杂性增加、性能可能略低于星型模式。
  • 示例
    • 事实表:销售事实表
    • 维度表:日期维度表(日期ID、日期、周、月ID、季度、年)、月维度表(月ID、月名称)、产品维度表、客户维度表

4. 维度建模的步骤

需求分析
  • 确定业务过程:识别需要建模的业务过程,如销售、库存、订单等。
  • 确定度量和维度:确定需要分析的度量(如销售金额、数量)和维度(如时间、产品、客户)。
设计事实表
  • 定义事实表:确定事实表的度量和外键。
  • 粒度选择:确定事实表的粒度,即每行记录表示的业务事件的粒度,如每笔交易、每天的销售。
设计维度表
  • 定义维度表:确定每个维度的属性和主键。
  • 维度规范化:根据需要对维度表进行规范化或非规范化处理。
实现与优化
  • 创建表结构:在数据库中创建事实表和维度表。
  • 数据加载:设计ETL过程,将数据从源系统加载到数据仓库中。
  • 查询优化:创建索引、分区等,提高查询性能。

5. 维度建模的最佳实践

选择适当的粒度
  • 细粒度:尽量选择最细的粒度,以便能够支持更多的查询需求和更精细的分析。
  • 一致性:确保所有度量和维度在相同的粒度下进行存储和分析。
维度表设计
  • 全面性:维度表应包含足够的属性,以支持多样化的查询和分析需求。
  • 标准化:根据具体需求,选择适当的标准化程度,平衡查询性能和存储空间。
事实表设计
  • 简洁性:事实表应只包含度量和外键,不应包含过多的维度属性。
  • 索引和分区:创建适当的索引和分区,提高大规模数据查询的性能。
数据质量和一致性
  • 数据清洗:在ETL过程中,确保数据的一致性和准确性,避免脏数据进入数据仓库。
  • 数据治理:制定和执行数据治理策略,确保数据的长期质量和一致性。

6. 维度建模的优势和挑战

优势
  • 查询性能:通过预先设计的事实表和维度表,优化了查询性能。
  • 易于理解:维度建模结构直观,易于业务用户和技术人员理解和使用。
  • 灵活性:支持多样化的分析需求,可以轻松扩展以适应新的业务需求。
挑战
  • 数据冗余:非规范化的维度表可能导致数据冗余,增加存储空间。
  • 设计复杂性:需要详细的需求分析和设计,初期实施复杂度较高。
  • 维护难度:随着数据量和业务需求的增加,维护和优化数据仓库变得更加复杂。

结论

维度建模是数据仓库设计中的一种有效方法,通过清晰地分离事实和维度,能够显著提升数据查询和分析的性能。尽管在设计和实施过程中可能面临一些挑战,但通过遵循最佳实践和合理的设计策略,可以构建一个高效、灵活的数据仓库系统,满足企业的多样化数据分析需求。

标签:数据仓库,建模,查询,维度,ID,事实
From: https://blog.csdn.net/youziguo/article/details/139581396

相关文章

  • 数据仓库核心:事实表深度解析与设计指南
    文章目录1.引言1.1基本概念1.2事实表定义2.设计原则2.1原则一:全面覆盖业务相关事实2.2原则二:精选与业务过程紧密相关的事实2.3原则三:拆分不可加事实为可加度量2.4原则四:明确声明事实表的粒度2.5原则五:避免同一事实表中存在不同粒度的事实2.6原则六:统一事实的......
  • 数据仓库中的7种建模方法及示例
    数据仓库中的7种建模方法及示例原创(https://mp.weixin.qq.com/s/4Nnhih4ccLxs5hguQMZRHA)晓晓数据驱动智能2024-06-0907:19陕西图片试象一下,你是一家繁忙餐厅的分析工程师。每天,顾客都会预订、下订单并完成付款。所有这些数据都会流入餐厅的交易数据库,记录每次互动的详细信......
  • 100天精通风控建模(原理+Python实现)——第28天:风控建模中逻辑回归是什么?主要应用在
    在当今风险多变的环境下,风控建模已经成为金融机构、企业等组织的核心工作之一。在各大银行和公司都实际运用于业务,用于营销和风险控制等。本文以视频的形式阐述风控建模中逻辑回归是什么,主要应用在哪些方面。并提供风控建模原理和Python实现文章清单。  之前已经阐述了1......
  • 基于matlab的动力学有限元期刊文章(关节接触界面的随机建模和更新)---论文复现
      stochasticmodellingandupdatingofajointcontactinterface是发表在mechanicalsystemsandsignalprocessing上的一篇较高质量文章。笔者成功复现该文章,效果优异,配备原文,方便学习使用,适合该方向的学习者。  接头和机械连接中接触界面的动态性能对装配结构的......
  • Block Transformer:通过全局到局部的语言建模加速LLM推理
    在基于transformer的自回归语言模型(LMs)中,生成令牌的成本很高,这是因为自注意力机制需要关注所有之前的令牌,通常通过在自回归解码过程中缓存所有令牌的键值(KV)状态来解决这个问题。但是,加载所有先前令牌的KV状态以计算自注意力分数则占据了LMs的推理的大部分成本。在这篇论文中,作者......
  • 数学建模 —— 图与网络(7)
    目录一、图的基本概念与数据结构1.1基本概念1.1.1图1.1.2完全、非完全图1.1.3二分图、完全二分图1.1.4.度、奇定点、偶顶点1.1.5Hamilton图1.1.6赋权图1.2图与网络的数据jie'gou1.2.1邻接矩阵表示法1.2.2稀疏矩阵表示法二、最短路问题2.1两个指定顶点......
  • ChatGPT-4o在临床医学日常工作、数据分析与可视化、机器学习建模中的技术
    2022年11月30日,可能将成为一个改变人类历史的日子——美国人工智能开发机构OpenAI推出了聊天机器人ChatGPT-3.5,将人工智能的发展推向了一个新的高度。2023年11月7日,OpenAI首届开发者大会被称为“科技界的春晚”,吸引了全球广大用户的关注,GPT商店更是显现了OpenAI旨在构建AI生态......
  • 流程内嵌iframe建模页面并实现数据交互
     效果图: 1、准备工作:下载并设置layui  2、 创建对应建模-要拿到建模新建页面URL-要给对应权限 3、 流程页面创建对应按钮触发事件(你可以用其它方式)$("#oTable0").find("tbody").find("tr:eq(1)").find("td:eq(6)").prepend("<buttonid='s......
  • EFDC建模方法及在地表水环境评价、水源地划分、排污口论证
    原文链接:EFDC建模方法及在地表水环境评价、水源地划分、排污口论证https://mp.weixin.qq.com/s?__biz=MzUzNTczMDMxMg==&mid=2247605969&idx=3&sn=30087fd54f3f7a799423af2af789735a&chksm=fa821f36cdf59620bb55495293987726bfa59dcf0bdbab1212fd7cda48ed1aee24785d9a9be9&toke......
  • 可视化数据科学平台在信贷领域应用系列五:零代码可视化建模
    信贷风控模型是金融机构风险管理的核心工具,在信贷风险管理工作中扮演着至关重要的角色。随着信贷市场的环境不断变化,信贷业务的风险日趋复杂化和隐蔽化,开发和应用准确高效的信贷风控模型显得尤为重要。信贷风险控制面临着越来越大的挑战和压力,也对风控模型的性能提出了更高的要......