题面翻译
给定长度为 \(n\) 的序列 \(a\)。对于 \(1\leq i<j\leq n\),若不存在 \(k\in[1,n]\) 使得 \(a_k\mid a_i\) 且 \(a_k\mid a_j\) 那么 \((i,j)\) 是好的。
求出好的数对数量。\(1\le a_i\le n\leq 10^6\)。
题目描述
You are given an array of integers $ a_1, a_2, \ldots, a_n $ .
A pair of integers $ (i, j) $ , such that $ 1 \le i < j \le n $ , is called good, if there does not exist an integer $ k $ ( $ 1 \le k \le n $ ) such that $ a_i $ is divisible by $ a_k $ and $ a_j $ is divisible by $ a_k $ at the same time.
Please, find the number of good pairs.
输入格式
Each test contains multiple test cases. The first line contains the number of test cases $ t $ ( $ 1 \le t \le 2 \cdot 10^4 $ ). The description of the test cases follows.
The first line of each test case contains a single integer $ n $ ( $ 1 \le n \le 10^6 $ ).
The second line of each test case contains $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ 1 \le a_i \le n $ ).
It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 10^6 $ .
输出格式
For each test case, output the number of good pairs.
样例 #1
样例输入 #1
6
4
2 4 4 4
4
2 3 4 4
9
6 8 9 4 6 8 9 4 9
9
7 7 4 4 9 9 6 2 9
18
10 18 18 15 14 4 5 6 8 9 10 12 15 16 18 17 13 11
21
12 19 19 18 18 12 2 18 19 12 12 3 12 12 12 18 19 16 18 19 12
样例输出 #1
0
3
26
26
124
82
提示
In the first test case, there are no good pairs.
In the second test case, here are all the good pairs: $ (1, 2) $ , $ (2, 3) $ , and $ (2, 4) $ .
标签:10,le,19,18,Rhyme,12,test,Counting From: https://www.cnblogs.com/gutongxing/p/18233143