代码如下:
"""
author: wangyilin
"""
import numpy as np
from sklearn.model_selection import train_test_split
def get_data():
'''
获取数据
:return: 文本数据,对应的labels
'''
with open("/home/bkrc/Desktop/6/data/ham_data.txt", encoding="utf8") as ham_f, open("/home/bkrc/Desktop/6/data/spam_data.txt", encoding="utf8") as spam_f:
ham_data = ham_f.readlines()
spam_data = spam_f.readlines()
ham_label = np.ones(len(ham_data)).tolist()
spam_label = np.zeros(len(spam_data)).tolist()
corpus = ham_data + spam_data
labels = ham_label + spam_label
return corpus, labels
def prepare_datasets(corpus, labels, test_data_proportion=0.3):
'''
:param corpus: 文本数据
:param labels: label数据
:param test_data_proportion:测试数据占比
:return: 训练数据,测试数据,训练label,测试label
'''
train_X, test_X, train_Y, test_Y = train_test_split(corpus, labels,
test_size=test_data_proportion, random_state=42)
return train_X, test_X, train_Y, test_Y
def remove_empty_docs(corpus, labels):
filtered_corpus = []
filtered_labels = []
for doc, label in zip(corpus, labels):
if doc.strip():
filtered_corpus.append(doc)
filtered_labels.append(label)
return filtered_corpus, filtered_labels
from sklearn import metrics
def get_metrics(true_labels, predicted_labels):
print('准确率:', np.round(
metrics.accuracy_score(true_labels,
predicted_labels),
2))
print('精度:', np.round(
metrics.precision_score(true_labels,
predicted_labels,
average='weighted'),
2))
print('召回率:', np.round(
metrics.recall_score(true_labels,
predicted_labels,
average='weighted'),
2))
print('F1得分:', np.round(
metrics.f1_score(true_labels,
predicted_labels,
average='weighted'),
2))
def train_predict_evaluate_model(classifier,
train_features, train_labels,
test_features, test_labels):
# build model
classifier.fit(train_features, train_labels)
# predict using model
predictions = classifier.predict(test_features)
# evaluate model prediction performance
get_metrics(true_labels=test_labels,
predicted_labels=predictions)
return predictions
def main():
corpus, labels = get_data() # 获取数据集
print("总的数据量:", len(labels))
corpus, labels = remove_empty_docs(corpus, labels)
print('样本之一:', corpus[10])
print('样本的label:', labels[10])
label_name_map = ["垃圾邮件", "正常邮件"]
print('实际类型:', label_name_map[int(labels[10])], label_name_map[int(labels[5900])])
# 对数据进行划分
train_corpus, test_corpus, train_labels, test_labels = prepare_datasets(corpus,
labels,
test_data_proportion=0.3)
from normalization import normalize_corpus
# 进行归一化
norm_train_corpus = normalize_corpus(train_corpus)
norm_test_corpus = normalize_corpus(test_corpus)
''.strip()
from feature_extractors import bow_extractor, tfidf_extractor
import gensim
import jieba
# 词袋模型特征
bow_vectorizer, bow_train_features = bow_extractor(norm_train_corpus)
bow_test_features = bow_vectorizer.transform(norm_test_corpus)
# tfidf 特征
tfidf_vectorizer, tfidf_train_features = tfidf_extractor(norm_train_corpus)
tfidf_test_features = tfidf_vectorizer.transform(norm_test_corpus)
# tokenize documents
tokenized_train = [jieba.lcut(text)
for text in norm_train_corpus]
print(tokenized_train[2:10])
tokenized_test = [jieba.lcut(text)
for text in norm_test_corpus]
# build word2vec 模型
model = gensim.models.Word2Vec(tokenized_train,
size=500,
window=100,
min_count=30,
sample=1e-3)
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import SGDClassifier
from sklearn.linear_model import LogisticRegression
mnb = MultinomialNB()
svm = SGDClassifier(loss='hinge', max_iter=100)
lr = LogisticRegression()
# 基于词袋模型的多项朴素贝叶斯
print("基于词袋模型特征的贝叶斯分类器")
mnb_bow_predictions = train_predict_evaluate_model(classifier=mnb,
train_features=bow_train_features,
train_labels=train_labels,
test_features=bow_test_features,
test_labels=test_labels)
# 基于词袋模型特征的逻辑回归
print("基于词袋模型特征的逻辑回归")
lr_bow_predictions = train_predict_evaluate_model(classifier=lr,
train_features=bow_train_features,
train_labels=train_labels,
test_features=bow_test_features,
test_labels=test_labels)
# 基于词袋模型的支持向量机方法
print("基于词袋模型的支持向量机")
svm_bow_predictions = train_predict_evaluate_model(classifier=svm,
train_features=bow_train_features,
train_labels=train_labels,
test_features=bow_test_features,
test_labels=test_labels)
# 基于tfidf的多项式朴素贝叶斯模型
print("基于tfidf的贝叶斯模型")
mnb_tfidf_predictions = train_predict_evaluate_model(classifier=mnb,
train_features=tfidf_train_features,
train_labels=train_labels,
test_features=tfidf_test_features,
test_labels=test_labels)
# 基于tfidf的逻辑回归模型
print("基于tfidf的逻辑回归模型")
lr_tfidf_predictions=train_predict_evaluate_model(classifier=lr,
train_features=tfidf_train_features,
train_labels=train_labels,
test_features=tfidf_test_features,
test_labels=test_labels)
# 基于tfidf的支持向量机模型
print("基于tfidf的支持向量机模型")
svm_tfidf_predictions = train_predict_evaluate_model(classifier=svm,
train_features=tfidf_train_features,
train_labels=train_labels,
test_features=tfidf_test_features,
test_labels=test_labels)
import re
num = 0
for document, label, predicted_label in zip(test_corpus, test_labels, svm_tfidf_predictions):
if label == 0 and predicted_label == 0:
print('邮件类型:', label_name_map[int(label)])
print('预测的邮件类型:', label_name_map[int(predicted_label)])
print('文本:-')
print(re.sub('\n', ' ', document))
num += 1
if num == 4:
break
num = 0
for document, label, predicted_label in zip(test_corpus, test_labels, svm_tfidf_predictions):
if label == 1 and predicted_label == 0:
print('邮件类型:', label_name_map[int(label)])
print('预测的邮件类型:', label_name_map[int(predicted_label)])
print('文本:-')
print(re.sub('\n', ' ', document))
num += 1
if num == 4:
break
if __name__ == "__main__":
main()
标签:垃圾邮件,中文,features,labels,label,train,test,corpus,自然语言
From: https://www.cnblogs.com/mllt/p/18227265/py_ai_NLP_zwljyjfl