有一个显然的 \(\mathcal O(n^2)\) DP。
考虑利用组合数优化,只在满足纵坐标 \(y | p\) 的位置记录状态并转移。
有障碍,需要做容斥。
四种转移:线对线、点对点、线对点、点对线
组合计数算明白了就简单了。
代码
#include <bits/stdc++.h>
using namespace std;
constexpr int N = 254500 + 10, MOD = 509, M = MOD + 10;
int n, a[N], f[M][M], c[M][M], fl[N], fr[N], g[N];
// c[n][m] -> C(n + m, m)
int main() {
ios_base::sync_with_stdio(0); cin.tie(nullptr), cout.tie(nullptr);
cin >> n;
for (int i = 1; i <= n; i++) cin >> a[i];
if (a[n] == n) {cout << 0; return 0;}
for (int i = 0; i < MOD; i++) c[i][0] = c[0][i] = 1;
for (int i = 1; i < MOD; i++) {
for (int j = 1; j < MOD; j++) c[i][j] = (c[i - 1][j] + c[i][j - 1]) % MOD;
}
fill(fl, fl + n + 1, 1);
for (int l = 0, r = MOD; r <= n; l += MOD, r += MOD) {
// line to line
for (int i = MOD; i <= n; i++) fl[i] = (fl[i] + fl[i - MOD]) % MOD;
for (int i = l + 1; i <= r; i++) {
// point to point
for (int j = l + 1; j < i; j++) if (a[j] <= a[i]) {
g[i] += g[j] * c[i - j][(a[i] - a[j]) % MOD];
}
// line to point
int lim = min(a[i], MOD - (i - l));
for (int j = 0; j <= lim; j++) g[i] += fl[a[i] - j] * c[i - 1 - l][j];
g[i] = (MOD - g[i] % MOD);
}
// point to line
for (int i = l + 1; i <= r; i++) {
int lim = min(n - a[i], MOD - (r - i + 1));
for (int j = 0; j <= lim; j++) fr[a[i] + j] += g[i] * c[r - i][j];
}
for (int i = MOD; i <= n; i++) fr[i] += fr[i - MOD];
for (int i = 0; i <= n; i++) fl[i] = (fl[i] + fr[i]) % MOD;
fill(fr, fr + n + 1, 0);
}
cout << fl[n] << '\n';
return 0;
}
标签:27,cout,884,int,UR,对线,509,UOJ
From: https://www.cnblogs.com/chy12321/p/18224361