相机标定工具的评价和比较研究
论文:https://arxiv.org/pdf/2306.09014v1
附赠自动驾驶最全的学习资料和量产经验:链接
摘要
在许多基于摄像机的应用中,需要通过几何相机标定(GCC)找到入射光线和图像像素之间的几何关系,即投影模型。
为了提供实用的标定指南,本文调查和评估了现有的GCC工具,综述涵盖了这些工具中使用的摄像机模型、标定目标和算法,突出它们的特性以及GCC发展的趋势,评估比较了六种基于目标的GCC工具,分别为BabelCalib、Basalt、Camodocal、Kalibr、MATLAB标定工具和基于OpenCV的ROS标定工具,使用了宽角和鱼眼镜头描述的三种传统投影模型的模拟和实际数据。
这些测试揭示了这些相机模型的优缺点,以及这些GCC工具的可重复性,根据调查和评估,还讨论了GCC的未来研究方向。
主要贡献
相机在从遥感、测绘、机器人技术到内窥镜等一系列应用中都是不可或缺的。这些应用通常需要了解相机中真实世界点和它们在图像中的几何关系(图1)。为了解决这种几何映射问题,引入了几何相机标定(GCC),作为计算机视觉、物联网和机器人技术的交汇点之一,自20世纪70年代以来,GCC一直受到广泛关注,并且至今仍然在积极研究,可能是由于各种应用需求不断发展的推动。
图1 几何相机标定及评估工具
根据工作原理的不同,有传统相机、深度相机、事件相机、热像相机等。
根据视场角(AOV),相机可以粗略地分为传统相机(通常<64°)、广角相机(<100°)、鱼眼相机和全景相机(≥ 180°),相邻组之间存在模糊的边界。传统和广角相机通常通过针孔模型(即透视模型)很好地表示。全景相机包括视场角≥ 180°的鱼眼相机,以及由镜头和镜子(“cata”表示镜子反射,“dioptric”表示透镜折射)组成的反射折射相机。还有由多个相机组成的相机架,通过拼接图像实现较大的视场角。根据所有入射光线是否经过单个点,相机可以分为中心相机(具有单个有效视点,即光学中心)和非中心相机。中心相机包括传统相机、视场角≤ 195°的鱼眼相机,以及通过组合针孔相机和双曲线、抛物线或椭圆镜子构建的许多反射折射相机。非中心相机的实例包括使用球面镜构建的反射
标签:GCC,标定,相机,几何,评价,工具,评估 From: https://blog.csdn.net/liuphahaha/article/details/139183387