1. 内存和地址
1.1 内存
把内存划分为⼀个个的内存单元,每个内存单元的⼤⼩取1个字节。
计算机中常⻅的单位(补充): ⼀个⽐特位可以存储⼀个2进制的位1或者0。
1byte = 8bit 1KB = 1024byte 1MB = 1024KB 1GB = 1024MB 1TB = 1024GB 1PB = 1024TB
其中,每个内存单元,相当于⼀个学⽣宿舍,⼀ 个⼈字节空间⾥⾯能放8个⽐特位,就好⽐同学们 住的⼋⼈间,每个⼈是⼀个⽐特位。 每个内存单元也都有⼀个编号(这个编号就相当 于宿舍房间的⻔牌号),有了这个内存单元的编 号,CPU就可以快速找到⼀个内存空间。
⽣活中我们把⻔牌号也叫地址,在计算机中我们 把内存单元的编号也称为地址。C语⾔中给地址起 了新的名字叫:指针。所以我们可以理解为: 内存单元的编号==地址==指针。
1.2 究竟该如何理解编址
硬件与硬件之间是互相独⽴的,那么如何通 信呢?答案很简单,⽤"线"连起来。⽽CPU和内存之间也是有⼤量的数据交互的,所以,两者必须也⽤线连起来。 不过,我们今天关⼼⼀组线,叫做地址总线。
32位机器有32根地址总线, 每根线只有两态,表⽰0,1【电脉冲有⽆】,那么 ⼀根线,就能表⽰2种含义,2根线就能表⽰4种含 义,依次类推。32根地址线,就能表⽰2^32种含 义,每⼀种含义都代表⼀个地址。 地址信息被下达给内存,在内存上,就可以找到 该地址对应的数据,将数据在通过数据总线传⼊ CPU内寄存器。
2. 指针变量和地址
2.1 取地址操作符(&)
得到地址, 这⾥就得学习⼀个操作符(&)-取地址操作符。虽然整型变量占⽤4个字节,我们只要知道了第⼀个字节地址,顺藤摸⽠访问到4个字节的数据也是可⾏的。
2.2 指针变量和解引⽤操作符(*)
2.2.1 指针变量
那我们通过取地址操作符(&)拿到的地址是⼀个数值,⽐如:0x006FFD70,这个数值有时候也是需要 存储起来,⽅便后期再使⽤的,那我们把这样的地址值存放在哪⾥呢?答案是:指针变量中。
指针变量也是⼀种变量,这种变量就是⽤来存放地址的,存放在指针变量中的值都会理解为地址。
2.2.2 如何拆解指针类型
int a = 10; int * pa = &a;
这⾥pa左边写的是 int* , * 是在说明pa是指针变量,⽽前⾯的 int 是在说明pa指向的是整型(int) 类型的对象。
2.2.3 解引⽤操作符
我们只要拿到了地址(指针),就可以通过地址(指针)找到地址(指针) 指向的对象,这⾥必须学习⼀个操作符叫解引⽤操作符(*)。
#include<stdio.h> main() { int a = 100; int* pa = &a; *pa = 0; return 0; }
上⾯代码中第7⾏就使⽤了解引⽤操作符, *pa 的意思就是通过pa中存放的地址,找到指向的空间, *pa其实就是a变量了;所以*pa=0,这个操作符是把a改成了0. 有同学肯定在想,这⾥如果⽬的就是把a改成0的话,写成 a = 0; 不就完了,为啥⾮要使⽤指针呢? 其实这⾥是把a的修改交给了pa来操作,这样对a的修改,就多了⼀种的途径,写代码就会更加灵活, 后期慢慢就能理解了。
2.3 指针变量的⼤⼩
前⾯的内容我们了解到,32位机器假设有32根地址总线,每根地址线出来的电信号转换成数字信号后 是1或者0,那我们把32根地址线产⽣的2进制序列当做⼀个地址,那么⼀个地址就是32个bit位,需要4 个字节才能存储。 如果指针变量是⽤来存放地址的,那么指针变的⼤⼩就得是4个字节的空间才可以。 同理64位机器,假设有64根地址线,⼀个地址就是64个⼆进制位组成的⼆进制序列,存储起来就需要 8个字节的空间,指针变的⼤⼩就是8个字节。
结论:
• 32位平台下地址是32个bit位,指针变量⼤⼩是4个字节
• 64位平台下地址是64个bit位,指针变量⼤⼩是8个字节
• 注意指针变量的⼤⼩和类型是⽆关的,只要指针类型的变量,在相同的平台下,⼤⼩都是相同的。
3. 指针变量类型的意义
3.1 指针的解引⽤
结论:指针的类型决定了,对指针解引⽤的时候有多⼤的权限(⼀次能操作⼏个字节)。
⽐如: char* 的指针解引⽤就只能访问⼀个字节,⽽ int* 的指针的解引⽤就能访问四个字节。
3.2 指针+-整数
char* 类型的指针变量+1跳过1个字节, int* 类型的指针变量+1跳过了4个字节。 这就是指针变量的类型差异带来的变化。
结论:指针的类型决定了指针向前或者向后⾛⼀步有多大(距离)。
3.3 void*指针
在指针类型中有⼀种特殊的类型是 void* 类型的,可以理解为⽆具体类型的指针(或者叫泛型指 针),这种类型的指针可以⽤来接受任意类型地址。但是也有局限性, void* 类型的指针不能直接进 ⾏指针的+-整数和解引⽤的运算。
void* 类型的指针可以接收不同类型的地址,但是⽆法直接进⾏指针运算。⼀般 void* 类型的指针是使⽤在函数参数的部分,⽤来接收不同类型数据的地址,这样的设计可以 实现泛型编程的效果
4. const修饰指针
4.1 const修饰变量
int main() { int m = 0; m = 20;//m是可以修改的
const int n = 0; n = 20;//n是不能被修改的 return 0; }
其实n本质是变量,只不过被const修饰后,在语法上加了限制,只要我 们在代码中对n就⾏修改,就不符合语法规则,就报错,致使没法直接修改n。
4.2 const修饰指针变量
结论:const修饰指针变量的时候
• const如果放在*的左边,修饰的是指针指向的内容,保证指针指向的内容不能通过指针来改变。 但是指针变量本⾝的内容可变。
• const如果放在*的右边,修饰的是指针变量本⾝,保证了指针变量的内容不能修改,但是指针指 向的内容,可以通过指针改变。
5. 指针运算
指针的基本运算有三种,分别是:
• 指针+-整数
• 指针-指针
• 指针的关系运算
5.1 指针+-整数
因为数组在内存中是连续存放的,只要知道第⼀个元素的地址,顺藤摸⽠就能找到后⾯的所有元素。
5.2 指针-指针
int my_strlen(char *s)
{ char *p = s; while(*p != '\0' ) p++; return p-s; }
int main() { printf("%d\n", my_strlen("abc")); return 0; }
5.3 指针的关系运算
int main() { int arr[10] = {1,2,3,4,5,6,7,8,9,10}; int *p = &arr[0];
int i = 0; int sz = sizeof(arr)/sizeof(arr[0]);
while(p//指针的⼤⼩⽐较 { printf("%d ", *p); p++; } return 0; }
6. 野指针
概念:野指针就是指针指向的位置是不可知的(随机的、不正确的、没有明确限制的。
6.1 野指针成因
6.1.1 指针未初始化
int main() { int *p;//局部变量指针未初始化,默认为随机值 *p = 20; return 0; }
6.1.2 指针越界访问
int main() { int arr[10] = {0}; int *p = &arr[0]; int i = 0; for(i=0; i11; i++)
{ //当指针指向的范围超出数组arr的范围时,p就是野指针 *(p++) = i; } return 0; }
6.1.3. 指针指向的空间释放
int* test() { int n = 100; return &n; } int main() { int*p = test(); printf("%d\n", *p); return 0; }
6.2 如何规避野指针
6.2.1 指针初始化
如果明确知道指针指向哪⾥就直接赋值地址,如果不知道指针应该指向哪⾥,可以给指针赋值NULL. NULL 是C语⾔中定义的⼀个标识符常量,值是0,0也是地址,这个地址是⽆法使⽤的,读写该地址 会报错。
int main() { int num = 10; int*p1 = # int*p2 = NULL; return 0; }
6.2.2 ⼩⼼指针越界
⼀个程序向内存申请了哪些空间,通过指针也就只能访问哪些空间,不能超出范围访问,超出了就是 越界访问。
6.2.3 指针变量不再使⽤时,及时置NULL,指针使⽤之前检查有效性
当指针变量指向⼀块区域的时候,我们可以通过指针访问该区域,后期不再使⽤这个指针访问空间的 时候,我们可以把该指针置为NULL。因为约定俗成的⼀个规则就是:只要是NULL指针就不去访问, 同时使⽤指针之前可以判断指针是否为NULL。
6.2.4 避免返回局部变量的地址
如造成野指针的第3个例⼦,不要返回局部变量的地址。
7. assert断⾔
assert.h 头⽂件定义了宏 assert() ,⽤于在运⾏时确保程序符合指定条件,如果不符合,就报 错终⽌运⾏。这个宏常常被称为“断⾔”。
assert() 宏接受⼀个表达式作为参数。如果该表达式为真(返回值⾮零), assert() 不会产⽣ 任何作⽤,程序继续运⾏。如果该表达式为假(返回值为零), assert() 就会报错,在标准错误 流 stderr 中写⼊⼀条错误信息,显⽰没有通过的表达式,以及包含这个表达式的⽂件名和⾏号。
assert() 的使⽤对程序员是⾮常友好的,使⽤ assert() 有⼏个好处:它不仅能⾃动标识⽂件和 出问题的⾏号,还有⼀种⽆需更改代码就能开启或关闭 assert() 的机制。如果已经确认程序没有问 题,不需要再做断⾔,就在 #include 语句的前⾯,定义⼀个宏 NDEBUG 。
assert() 的缺点是,因为引⼊了额外的检查,增加了程序的运⾏时间。
8. 指针的使⽤和传址调⽤
8.1 strlen的模拟实现
库函数strlen的功能是求字符串⻓度,统计的是字符串中 \0 之前的字符的个数。
函数原型如下:size_t strlen ( const char * str );
参数str接收⼀个字符串的起始地址,然后开始统计字符串中 \0 之前的字符个数,最终返回⻓度。如果要模拟实现只要从起始地址开始向后逐个字符的遍历,只要不是 \0 字符,计数器就+1,这样直 到 \0 就停⽌。
int my_strlen(const char * str)
{ int count = 0; assert(str); while(*str) { count++; str++; } return count; }
int main() { int len = my_strlen("abcdef"); printf("%d\n", len); return 0; }
8.2 传值调⽤和传址调⽤
实参传递给形参的时候,形参会单独创建⼀份临时空间来接收实参,对形参的修改不影响实 参。
void Swap1(int x, int y) { int tmp = x; x = y; y = tmp; }
int main() { int a = 0; int b = 0; scanf("%d %d", &a, &b); printf("交换前:a=%d b=%d\n", a, b); Swap1(a, b); printf("交换后:a=%d b=%d\n", a, b); return 0; }
Swap1函数在使⽤ 的时候,是把变量本⾝直接传递给了函数,这种调⽤函数的⽅式我们之前在函数的时候就知道了,这 种叫传值调⽤。
void Swap2(int*px, int*py) { int tmp = 0; tmp = *px; *px = *py; *py = tmp; }
int main() { int a = 0; int b = 0; scanf("%d %d", &a, &b); printf("交换前:a=%d b=%d\n", a, b); Swap1(&a, &b); printf("交换后:a=%d b=%d\n", a, b); return 0; }
我们可以看到实现成Swap2的⽅式,顺利完成了任务,这⾥调⽤Swap2函数的时候是将变量的地址传 递给了函数,这种函数调⽤⽅式叫:传址调⽤。
传址调⽤,可以让函数和主调函数之间建⽴真正的联系,在函数内部可以修改主调函数中的变量;所 以未来函数中只是需要主调函数中的变量值来实现计算,就可以采⽤传值调⽤。如果函数内部要修改 主调函数中的变量的值,就需要传址调⽤。
标签:return,字节,int,地址,初识,指针,变量 From: https://blog.csdn.net/2401_83575662/article/details/139158249