今天改进跌倒检测模块的main部分,使其可以通过摄像头实时监测
import time from collections import deque import requests import cv2 import numpy as np import mediapipe as mp from stgcn.stgcn import STGCN from PIL import Image, ImageDraw, ImageFont mp_drawing = mp.solutions.drawing_utils mp_drawing_styles = mp.solutions.drawing_styles mp_pose = mp.solutions.pose KEY_JOINTS = [ mp_pose.PoseLandmark.NOSE, mp_pose.PoseLandmark.LEFT_SHOULDER, mp_pose.PoseLandmark.RIGHT_SHOULDER, mp_pose.PoseLandmark.LEFT_ELBOW, mp_pose.PoseLandmark.RIGHT_ELBOW, mp_pose.PoseLandmark.LEFT_WRIST, mp_pose.PoseLandmark.RIGHT_WRIST, mp_pose.PoseLandmark.LEFT_HIP, mp_pose.PoseLandmark.RIGHT_HIP, mp_pose.PoseLandmark.LEFT_KNEE, mp_pose.PoseLandmark.RIGHT_KNEE, mp_pose.PoseLandmark.LEFT_ANKLE, mp_pose.PoseLandmark.RIGHT_ANKLE ] POSE_CONNECTIONS = [(6, 4), (4, 2), (2, 13), (13, 1), (5, 3), (3, 1), (12, 10), (10, 8), (8, 2), (11, 9), (9, 7), (7, 1), (13, 0)] POINT_COLORS = [(0, 255, 255), (0, 191, 255), (0, 255, 102), (0, 77, 255), (0, 255, 0), # Nose, LEye, REye, LEar, REar (77, 255, 255), (77, 255, 204), (77, 204, 255), (191, 255, 77), (77, 191, 255), (191, 255, 77), # LShoulder, RShoulder, LElbow, RElbow, LWrist, RWrist (204, 77, 255), (77, 255, 204), (191, 77, 255), (77, 255, 191), (127, 77, 255), (77, 255, 127), (0, 255, 255)] # LHip, RHip, LKnee, Rknee, LAnkle, RAnkle, Neck LINE_COLORS = [(0, 215, 255), (0, 255, 204), (0, 134, 255), (0, 255, 50), (77, 255, 222), (77, 196, 255), (77, 135, 255), (191, 255, 77), (77, 255, 77), (77, 222, 255), (255, 156, 127), (0, 127, 255), (255, 127, 77), (0, 77, 255), (255, 77, 36)] ACTION_MODEL_MAX_FRAMES = 30 class FallDetection: def __init__(self): self.isOk = True self.action_model = STGCN(weight_file='./weights/tsstg-model.pth', device='cpu') self.joints_list = deque(maxlen=ACTION_MODEL_MAX_FRAMES) def draw_skeleton(self, frame, pts): l_pair = POSE_CONNECTIONS p_color = POINT_COLORS line_color = LINE_COLORS part_line = {} pts = np.concatenate((pts, np.expand_dims((pts[1, :] + pts[2, :]) / 2, 0)), axis=0) for n in range(pts.shape[0]): if pts[n, 2] <= 0.05: continue cor_x, cor_y = int(pts[n, 0]), int(pts[n, 1]) part_line[n] = (cor_x, cor_y) cv2.circle(frame, (cor_x, cor_y), 3, p_color[n], -1) # cv2.putText(frame, str(n), (cor_x+10, cor_y+10), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 255), 1) for i, (start_p, end_p) in enumerate(l_pair): if start_p in part_line and end_p in part_line: start_xy = part_line[start_p] end_xy = part_line[end_p] cv2.line(frame, start_xy, end_xy, line_color[i], int(1*(pts[start_p, 2] + pts[end_p, 2]) + 3)) return frame def cv2_add_chinese_text(self, img, text, position, textColor=(0, 255, 0), textSize=30): if (isinstance(img, np.ndarray)): # 判断是否OpenCV图片类型 img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) # 创建一个可以在给定图像上绘图的对象 draw = ImageDraw.Draw(img) # 字体的格式 fontStyle = ImageFont.truetype( "./fonts/MSYH.ttc", textSize, encoding="utf-8") # 绘制文本 draw.text(position, text, textColor, font=fontStyle) # 转换回OpenCV格式 return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR) def detect(self): # Initialize the webcam capture. cap = cv2.VideoCapture(0) # 使用0表示默认摄像头 # cap.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G')) # cap.set(cv2.CAP_PROP_FRAME_WIDTH, 800) # 解决问题的关键!!! # cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 600) # cap.set(cv2.CAP_PROP_FPS, 30) image_h = cap.get(cv2.CAP_PROP_FRAME_HEIGHT) image_w = cap.get(cv2.CAP_PROP_FRAME_WIDTH) frame_num = 0 print(image_h, image_w) with mp_pose.Pose( min_detection_confidence=0.7, min_tracking_confidence=0.5) as pose: while cap.isOpened(): fps_time = time.time() frame_num += 1 success, image = cap.read() if not success: print("Ignoring empty camera frame.") # 如果是实时摄像头,不需要使用'continue' continue # 提高性能 image.flags.writeable = False image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) results = pose.process(image) if not results.pose_landmarks: continue # 识别骨骼点 image.flags.writeable = True image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # mp_drawing.draw_landmarks( # image, # results.pose_landmarks, # mp_pose.POSE_CONNECTIONS, # landmark_drawing_spec=mp_drawing_styles.get_default_pose_landmarks_style()) landmarks = results.pose_landmarks.landmark joints = np.array([[landmarks[joint].x * image_w, landmarks[joint].y * image_h, landmarks[joint].visibility] for joint in KEY_JOINTS]) # 人体框 box_l, box_r = int(joints[:, 0].min())-50, int(joints[:, 0].max())+50 box_t, box_b = int(joints[:, 1].min())-100, int(joints[:, 1].max())+100 self.joints_list.append(joints) # 识别动作 action = '' clr = (0, 255, 0) # 30帧数据预测动作类型 if len(self.joints_list) == ACTION_MODEL_MAX_FRAMES: pts = np.array(self.joints_list, dtype=np.float32) out = self.action_model.predict(pts, (image_w, image_h)) action_name = self.action_model.class_names[out[0].argmax()] action = '{}: {:.2f}%'.format(action_name, out[0].max() * 100) print(action) if action_name == 'Fall Down': if self.isOk == True: requests.get('http://localhost:8080/book/isokfalse') self.isOk = False clr = (255, 0, 0) action = '摔倒' elif action_name == 'Walking': clr = (255, 128, 0) action = '行走' else: action = '' # 绘制骨骼点和动作类别 image = self.draw_skeleton(image, self.joints_list[-1]) image = cv2.rectangle(image, (box_l, box_t), (box_r, box_b), (255, 0, 0), 1) image = self.cv2_add_chinese_text(image, f'当前状态:{action}', (box_l + 10, box_t + 10), clr, 40) image = cv2.putText(image, f'FPS: {int(1.0 / (time.time() - fps_time))}', (50, 50), cv2.FONT_HERSHEY_PLAIN, 3, (0, 255, 0), 2) # Flip the image horizontally for a selfie-view display. cv2.imshow('MediaPipe Pose', image) if cv2.waitKey(1) & 0xFF == ord("q"): break # Release the resources. cap.release() cv2.destroyAllWindows() if __name__ == '__main__': FallDetection().detect()
标签:PoseLandmark,pose,77,任务,mp,5.21,import,结组,255 From: https://www.cnblogs.com/zeyangshuaige/p/18204339