首页 > 其他分享 >Spark_DLS语法:

Spark_DLS语法:

时间:2024-05-18 17:41:00浏览次数:26  
标签:语法 String val show clazz DLS id Spark spark

Spark_DLS语法:

目录

1.[Spark]-SQL

读取csv,json,jdbc的数据
完全兼容HQL,DSL
DateFrame:基于RDD的表结构,最终还是转化成RDD执行    

//1 新版本的spark统一入口
    val spark: SparkSession =SparkSession.builder()
      .master("local")
      .appName("sql")
      .getOrCreate()
//2 读取数据构建DataFrame,DF相当于一张表
    val linesDF=spark
      .read
      .format("csv")    //指定读取数据的类型
      .schema("lines STRING")  //指定字段名和字段类型
      .option("sep","\t")   //指定分割符
      .load("data/words.txt")

//3 将DF注册成一个视图,然后才能写sql
    linesDF.createOrReplaceTempView("lines")
    linesDF.printSchema()    //打印表结构
    
//4  写sql   完全兼容HQL
    val resultDF:DataFrame=spark.sql(
      """
        |select word,count(1) as num from(
        |select explode(split(line,',')) as word from
        |lines) as t1
        |group by word
        |""".stripMargin)

    resultDF.show()    //show()的话只展示部分数据

//5 将数据保存到hdfs
    resultDF
      .write
      .format("csv")
      .option("sep","\t")
      .mode(SaveMode.Overwrite)
      .save("data/wc")

2.DSL示例
DSL写法:  DSL必须在DF中写,从上往下写,代码的思想进行

//构建spark入口
val spark: SparkSession =SparkSession.builder()
      .master("local")
      .appName("sql")
      .getOrCreate()
      
//读取数据构建DataFrame(相当于一张表)    
val linesDF: DataFrame =spark
      .read
      .format("csv")
      .schema("lines STRING")
      .option("sep","\t")
      .load("data/words.txt")

//DSL不用注册成视图,是类SQL语言,介于代码和SQL之间的一种写法
import org.apache.spark.sql.functions._
import spark.implicits._

//相当于直接对linesDF进行select   传入的是列对象  $"列名"
val resultDF: DataFrame =linesDF.select(explode(split($"lines",","))as "word")  
      .groupBy($"word")
      .agg(count($"word") as "c")    //统计单词数量
    resultDF.show()
    
//保存数据
resultDF
      .write
      .format("csv")
      .option("sep","\t")
      .mode(SaveMode.Overwrite)
      .save("data/wc1")

3.DSL解析json,csv文件
导入依赖:
<dependency>
    <groupId>com.alibaba</groupId>
    <artifactId>fastjson</artifactId>
    <version>1.2.79</version>
</dependency>  
直接解析json格式的数据
创建spark sql环境
val spark: SparkSession =SparkSession
      .builder()
      .master("local")
      .appName("dsl")
      .config("spark.sql.shuffle.partitions",1)
      .getOrCreate()
      
//读取一个json格式的文件,不需要指定分隔符了直接解析,文件类型,文件路径
    val studentDF: DataFrame =spark
      .read
      .format("json")
      .load("data/students1.json")
      
//读取csv格式的文件
    val scoreDF: DataFrame =spark
      .read
      .format("csv")
      .option("sep", ",")
      .schema("sid STRING,cid STRING,sco DOUBLE") //指定列名和类型
      .load("data/score.txt")
1.printSchema() 打印表结构
root
 |-- age: long (nullable = true)
 |-- clazz: string (nullable = true)
 |-- gender: string (nullable = true)
 |-- id: string (nullable = true)
 |-- name: string (nullable = true)
2.studentDF.show(100) 默认20条数据
3.studentDF.show(false) 某些值太长,完整打印每一列的数据
4.DSL函数
1.选择数据,相当于RDD中的转换算子,返回值是DataFrame
2.不能使用聚合函数,需要在agg中使用聚合函数

studentDF.select("id","age").show(150)      //直接抽出来两列展示
studentDF.selectExpr("name","age+1 as age1").show(50)    //传一个表达式可以对列进行操作

+------+----+
|  name|age1|
+------+----+
|施笑槐|  23|
|吕金鹏|  25|
|单乐蕊|  23|

3.导入隐式转换,使用列对象的方式进行处理
import spark.implicits._
studentDF.select($"id",$"age").show()

4.导入spark函数,使用列对象的方法
import org.apache.spark.sql.functions._
studentDF.select($"id",substring($"clazz",0,2) as "cc").show()

5.where过滤数据
studentDF.where("gender='女' and age=23").show()
+---+--------+------+----------+------+
|age|   clazz|gender|        id|  name|
+---+--------+------+----------+------+
| 23|文科六班|    女|1500100007|尚孤风|
| 23|文科一班|    女|1500100016|潘访烟|
| 23|理科二班|    女|1500100052|居初兰|

6.分组聚合   groupBy()     聚合函数写在agg()中
分组和聚合要一起使用,结果中只包含分组字段和聚合字段
studentDF.groupBy($"clazz")
      .agg(count($"clazz") as "num",round(avg($"age")) as "avgAge")    //count里传字段
      .show(50)

7.排序    order by() 
  统计班级人数并且降序排列
studentDF
      .groupBy($"clazz")
      .agg(count($"clazz") as "num")
      .orderBy($"num".desc)
      .show()
      
8.表关联  join
val joinDF: DataFrame =studentDF.join(scoreDF,$"id"===$"sid","inner")

9. withColumn("新列名",row_number() over Window.partitionBy(...).orderBy(...))
     /**
     * 统计每个班级前十的同学
     * 先算每个同学的总分
     * withColumn  在DF的基础上增加新的列   需要导包
     */
import org.apache.spark.sql.expressions.Window
    joinDF
      .groupBy($"id",$"clazz")
      .agg(sum($"sco") as "sumSco")
      .withColumn("row",row_number() over Window.partitionBy($"clazz").orderBy($"sumSco".desc))
      .where($"row"<=10)
      .show()
4.DataSource
4.1 csv:需要手动指定列名和类型
val spark: SparkSession =SparkSession
      .builder()
      .master("local")       
      .appName("sql")                   
      .config("spark.sql.shuffle.partitions",1)
      .getOrCreate()
      
val csvDF: DataFrame =spark
      .read
      .format("csv")
      .schema("id STRING,name STRING,age INT,gender STRING,clazz STRING")
      .option("sep",",")
      .load("data/students.txt")
      
csvDF.show()

import spark.implicits._
import org.apache.spark.sql.functions._

//求每个班级人数并且保存文件内
    csvDF
      .groupBy($"clazz")
      .agg(count($"clazz") as "num")
      .write
      .format("csv")
      .option("sep",",")
      .mode(SaveMode.Overwrite)
      .save("data/clazzNum1")

4.2 json parquet 格式读取存储
/**
     * 读取json格式的数据,解析是不需要指定列名
     * 格式化代码,每一行都要是json格式
     * 有列名,存储空间变大,少某一个字段对其他没有影响
     */
    val jsonDF: DataFrame =spark
      .read
      .format("json")
      .load("data/students1.json")

 //统计性别人数,将数据保存为json格式
    jsonDF
      .groupBy($"gender")
      .agg(count($"gender") as "g")
      .write
      .format("json")
      .mode(SaveMode.Overwrite)
      .save("data/gender_num")

---------------------------------------------------------------
//上面数据保存为parquet格式 (带表结构的压缩格式  压缩比取决于信息熵)
//认为不可读,时间换空间
 jsonDF
      .write
      .format("Parquet")
      .mode(SaveMode.Overwrite)
      .save("data/students")
      
//读取parquet格式数据,自带表结构不需要手动指定列

    val parquetDF: DataFrame =spark
      .read
      .format("parquet")
      .load("data/students")
    parquetDF.printSchema()
    parquetDF.show(30)

4.3 从JDBC中读取数据
//引入MySQL依赖,指定数据格式、驱动、数据库数据表、用户名密码
val jdbcDF: DataFrame = spark
      .read
      .format("jdbc")
      .option("url", "jdbc:mysql://master:3306")
      .option("dbtable", "bigdata.students")
      .option("user", "root")
      .option("password", "123456")
      .load()

5.RDD和DF转换
//spark入口
val spark: SparkSession =SparkSession
      .builder()
      .appName("rdd")
      .master("local")
      .getOrCreate()
      
val sc: SparkContext =spark.sparkContext     //获取SparkContext对象
//取出数据转化成元组格式
val studentsRDD: RDD[(String, String, String, String, String)]   =sc.textFile("data/students.txt")
      .map(line=>line.split(","))
      .map{
        case Array(id:String,name:String,age:String,gender:String,clazz:String)=>
          (id,name,age,gender,clazz)
      }

//导入隐式转换,调用toDF方法
import spark.implicits._

val studentsDF: DataFrame =studentsRDD.toDF("id","name","age","gender","clazz")

studentsDF.show(30)

DF转RDD
//saprksession环境
val spark: SparkSession = SparkSession
      .builder()
      .appName("rdd")
      .master("local")
      .getOrCreate()
//读取文件      
val studentDF: DataFrame = spark
      .read
      .format("json")
      .load("data/students.json")
//DF格式转RDD
import spark.implicits._
val studentRDD: RDD[Row] = studentDF.rdd
//通过列名获取数据
val stuRDD: RDD[(String, String, Long, String, String)] = studentRDD.map((row: Row) => {
      val id: String = row.getAs[String]("id")
      val name: String = row.getAs[String]("name")
      val age: Long = row.getAs[Long]("age")
      val gender: String = row.getAs[String]("gender")
      val clazz: String = row.getAs[String]("clazz")
      (id, name, age, gender, clazz)
    })
//模式匹配获取数据
val caseRDD: RDD[(String, String, Long, String, String)] = studentRDD.map {
      //需要注意字段顺序
      case Row(age: Long, clazz: String, gender: String, id: String, name: String) =>
        (id, name, age, gender, clazz)
    }

6.窗口函数
row_number
rank
sum
count
avg
lag
lead

分组聚合字段会变少,分区是增加一个字段,其他的保持不变

6.1 sum over 中排序的两种用法
//计算年级前十同学的信息
//分区内加order by,是累加的结果
val joinDF: DataFrame =studentDF.join(scoreDF,$"id"===$"sid")
joinDF
      .withColumn("sumSco",sum($"sco") over Window.partitionBy($"id").orderBy($"sco"))
      .show()
+----------+------+---+------+--------+----------+-------+-----+------+
|        id|  name|age|gender|   clazz|       sid|    cid|  sco|sumSco|
+----------+------+---+------+--------+----------+-------+-----+------+
|1500100001|施笑槐| 22|    女|文科六班|1500100001|1000003|  0.0|   0.0|
|1500100001|施笑槐| 22|    女|文科六班|1500100001|1000002|  5.0|   5.0|
|1500100001|施笑槐| 22|    女|文科六班|1500100001|1000004| 29.0|  34.0|
|1500100001|施笑槐| 22|    女|文科六班|1500100001|1000006| 52.0|  86.0|

//开窗后再进行排序
 val joinDF: DataFrame =studentDF.join(scoreDF,$"id"===$"sid")
 joinDF
      .withColumn("sumSco",sum($"sco") over Window.partitionBy($"id"))
      .orderBy($"sumSco".desc)
      .limit(60)  
--+ +----------+------+---+------+--------+----------+-------+-----+---
|        id|  name|age|gender|   clazz|       sid|    cid|  sco|sumSco|
+----------+------+---+------+--------+----------+-------+-----+------+
|1500100929|满慕易| 21|    女|理科三班|1500100929|1000001|144.0| 630.0|
|1500100929|满慕易| 21|    女|理科三班|1500100929|1000002|138.0| 630.0|
|1500100929|满慕易| 21|    女|理科三班|1500100929|1000003| 88.0| 630.0|
|1500100929|满慕易| 21|    女|理科三班|1500100929|1000007| 91.0| 630.0|
|1500100929|满慕易| 21|    女|理科三班|1500100929|1000008| 99.0| 630.0|
|1500100929|满慕易| 21|    女|理科三班|1500100929|1000009| 70.0| 630.0|
|1500100080|巫景彰| 21|    男|理科五班|1500100080|1000001|142.0| 628.0|
|1500100080|巫景彰| 21|    男|理科五班|1500100080|1000002|149.0| 628.0|
|1500100080|巫景彰| 21|    男|理科五班|1500100080|1000003|123.0| 628.0|

6.2 count
//统计每科都及格的学生    count   orderBy的效果和row_number效果一样,对sid分区,对cid进行排序,对sid进行统计,累加最后的结果就是区内总人数
 scoreDF
      //关联科目表 
      .join(subjectDF, "cid")
      //过滤不及格的分数
      .where($"sco" >= $"ssco" * 0.6)
      //统计每个学生几个的科目数
      .withColumn("jige", count($"sid") over Window.partitionBy($"sid"))
      //取出都及格的学生
      .where($"jige" === 6)
      //.show(100)

6.3 avg
//统计总分大于年级平均分的学生:(计算方式与开窗方式)
  先计算总分,再根据文理科开窗,计算年级均分
 joinDF
      .withColumn("sumSco",sum($"sco") over Window.partitionBy($"id"))
      .withColumn("avgSco",avg($"sumSco") over Window.partitionBy(substring($"clazz",0,2)))
      .show(6000)

|1500100999|钟绮晴| 23|    女|文科五班|1500100999|1000004| 48.0| 371.0|374.00766283524905|
|1500100999|钟绮晴| 23|    女|文科五班|1500100999|1000005| 41.0| 371.0|374.00766283524905|
|1500100999|钟绮晴| 23|    女|文科五班|1500100999|1000006| 10.0| 371.0|374.00766283524905|
|1500100003|单乐蕊| 22|    女|理科六班|1500100003|1000001| 48.0| 359.0| 370.9769392033543|
|1500100003|单乐蕊| 22|    女|理科六班|1500100003|1000002|132.0| 359.0| 370.9769392033543|
|1500100003|单乐蕊| 22|    女|理科六班|1500100003|1000003| 41.0| 359.0| 370.9769392033543|

6.4 lag 取当前行的前面几行的那一条数据,必须分区排序
joinDF
      .groupBy($"id",$"clazz")    //分组聚合只包含出现的列,所以此处对班级进行一次分组
      .agg(sum($"sco" ) as "sumSco")
      .withColumn("rm",row_number() over Window.partitionBy($"clazz").orderBy($"sumSco".desc))  //注意设置降序的位置
      .show(1000)

+----------+--------+------+---+
|        id|   clazz|sumSco| rm|
+----------+--------+------+---+
|1500100308|文科一班| 628.0|  1|
|1500100875|文科一班| 595.0|  2|
|1500100943|文科一班| 580.0|  3|
|1500100871|文科一班| 569.0|  4|



//分组聚合只包含出现的列,所以此处对班级进行一次分组
//**lag函数必须进行分区排序**
 joinDF
      .groupBy($"id",$"clazz")    
      .agg(sum($"sco" ) as "sumSco")
      .withColumn("rm",row_number() over Window.partitionBy($"clazz").orderBy($"sumSco".desc))
      .withColumn("headSumSco",lag($"sumSco",1,750) over Window.partitionBy($"clazz").orderBy($"sumSco".desc))
      .withColumn("cha",$"sumSco"-$"headSumSco")
      .show(1000)

+----------+--------+------+---+----------+------+
|        id|   clazz|sumSco| rm|headSumSco|   cha|
+----------+--------+------+---+----------+------+
|1500100308|文科一班| 628.0|  1|     750.0|-122.0|
|1500100875|文科一班| 595.0|  2|     628.0| -33.0|
|1500100943|文科一班| 580.0|  3|     595.0| -15.0|
|1500100871|文科一班| 569.0|  4|     580.0| -11.0|

标签:语法,String,val,show,clazz,DLS,id,Spark,spark
From: https://www.cnblogs.com/atao-BigData/p/18199566

相关文章